Recent Advances in Application of 1D Nanomaterials for Photocatalytic Nitrogen Fixation
Abstract
:1. Introduction
2. Overview of Semiconducting Nanomaterials for Photocatalytic N2 Fixation
Mechanism of Photocatalytic N2 Fixation
3. One-Dimensional (1D) Nanomaterials
Nanomaterial for Photocatalytic N2 Fixation
4. Synthesis Methods for 1D Nanomaterials
4.1. Chemical Vapor Deposition Method
- (a)
- Direct vapor synthesis
- (b)
- Indirect vapor phase synthesis
4.2. Solution Phase Synthesis
- (a)
- Coprecipitation
- (b)
- Hydrothermal/Solvothermal synthesis
4.3. Template Assisted Synthesis
4.4. Sol-Gel Method
4.5. Electrochemical Deposition
5. Important 1D Nanostructures for N2 Fixation
5.1. Metal Oxide 1D Nanostructures
5.2. Carbon-Based 1D Nanostructure
5.3. Metal Sulfide 1D Nanostructure
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, R.; Li, X.; Gao, W.; Zhang, X.; Liang, S.; Luo, M. Recent advances in photocatalytic nitrogen fixation: From active sites to ammonia quantification methods. RSC Adv. 2021, 11, 14844–14861. [Google Scholar] [CrossRef] [PubMed]
- Ghaly, A.; Ramakrishnan, V. Nitrogen sources and cycling in the ecosystem and its role in air, water and soil pollution: A critical review. J. Pollut. Eff. Control 2015, 3, 1000136. [Google Scholar]
- Chen, X.; Li, N.; Kong, Z.; Ong, W.-J.; Zhao, X. Photocatalytic fixation of nitrogen to ammonia: State-of-the-art advancements and future prospects. Mater. Horiz. 2018, 5, 9–27. [Google Scholar] [CrossRef]
- Wang, W.; Ji, Z.; Zhang, D.; Sun, P.; Duan, J. TiO2 doped HKUST-1/CM film in the three-phase photocatalytic ammonia synthesis system. Ceram. Int. 2021, 47, 19180–19190. [Google Scholar] [CrossRef]
- Wu, R.; Yi, J.; Bao, R.; Liu, P. The excellent photocatalytic capability of TiO2@ C/O-doped g-C3N4 heterojunction photocatalyst. Colloids Surf. A 2022, 648, 129351. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, S.; Zhao, J.; Du, Y.; Dou, S. Control of photocarrier separation and recombination at bismuth oxyhalide interface for nitrogen fixation. J. Phys. Chem. Lett. 2020, 11, 9304–9312. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, S.; Pawar, K.; Koli, V.; Pachfule, P. Emerging graphitic carbon nitride-based nanobiomaterials for biological applications. ACS Appl. Bio Mater. 2023, 6, 1339–1367. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, C.; Yuan, S.; Li, X.; Zhang, J.; Hu, X.; Lin, H.; Wu, Y.; He, Y. One-step fabrication of Cu-doped Bi2MoO6 microflower for enhancing performance in photocatalytic nitrogen fixation. J. Colloid Interface Sci. 2023, 638, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Qiu, H.; Wang, Z.; Wang, B.; Meng, Q.; Sun, S.; Tang, Y.; Zhao, K. Constructing the Z-scheme TiO2/Au/BiOI nanocomposite for enhanced photocatalytic nitrogen fixation. Appl. Surf. Sci. 2021, 556, 149785. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, S.; Wang, T.; Liu, S.; Gao, X.; Wang, C.; Wang, G. Recent advances in application of graphitic carbon nitride-based catalysts for photocatalytic nitrogen fixation. Small 2022, 18, 2202252. [Google Scholar] [CrossRef] [PubMed]
- Comer, B.; Nazemi, M.; Hatzell, M.; Medford, A. Analysis of Photocatalytic Nitrogen Fixation on Rutile TiO2 (110). ACS Sustain. Chem. Eng. 2017, 6, 4648–4660. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Z.; Meng, Y.; Ni, Z.; Xie, B.; Xia, S. Experimental and theoretical study on photocatalytic nitrogen reduction catalyzed by Fe doped MoO2. Sep. Purif. Technol. 2023, 318, 124019. [Google Scholar] [CrossRef]
- Xu, T.; Liang, J.; Li, S.; Xu, Z.; Yue, L.; Li, T.; Luo, Y.; Liu, Q.; Shi, X.; Asiri, A.M.; et al. Recent Advances in Nonprecious Metal Oxide Electrocatalysts and Photocatalysts for N2 Reduction Reaction under Ambient Condition. Small Sci. 2021, 1, 2000069. [Google Scholar] [CrossRef]
- Hirakawa, H.; Hashimoto, M.; Shiraishi, Y.; Hirai, T. Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide. J. Am. Chem. Soc. 2017, 139, 10929–10936. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Hai, X.; Ding, X.; Chang, K.; Xiang, Y.; Meng, X.; Yang, Z.; Chen, H.; Ye, J. Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water. Adv. Mater. 2017, 29, 1701774. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Jalil, A.; Wu, D.; Chen, S.; Liu, Y.; Gao, C.; Ye, W.; Qi, Z.; Ju, H.; Wang, C. Refining defect states in W18O49 by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc. 2018, 140, 9434–9443. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, M.; Habibi, M.M.; Zhang, G.; Moradian, S.; Ghasemi, J.B. In-situ construction of ZnO/Sb2 MoO6 heterostructure for efficient visible-light photocatalytic N2 fixation to NH3. J. Am. Chem. Soc. 2018, 140, 9434–9443. [Google Scholar]
- Dolla, T.H.; Mathews, T.; Maxakato, N.W.; Ndungu, P.; Montini, T. Recent advances in transition metal sulfide-based electrocatalysts and photocatalysts for nitrogen fixation. J. Electroanal. Chem. 2022, 928, 117049. [Google Scholar] [CrossRef]
- Hao, Q.; Liu, C.; Jia, G.; Wang, Y.; Arandiyan, H.; Wei, W.; Ni, B. Catalytic reduction of nitrogen to produce ammonia by bismuth-based catalysts: State of the art and future prospects. Mater. Horiz. 2020, 7, 1014–1029. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, N.; Wu, Z.; Xie, X. Artificial nitrogen fixation over bismuth-based photocatalysts: Fundamentals and future perspectives. J. Mater. Chem. A 2020, 8, 4978–4995. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, K.; Liang, Z.; Zou, R.; Xu, Q. Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design. Chem. Soc. Rev. 2019, 48, 5658–5716. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Li, Q.K.; Cheng, J.; Liu, L.; Yan, Q.; Wu, Y.; Zhang, X.H.; Wang, Z.Y.; Qiu, Q.; Luo, Y. Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J. Am. Chem. Soc. 2016, 138, 8706–8709. [Google Scholar] [CrossRef] [PubMed]
- Hao, D.; Liu, Y.; Gao, S.; Arandiyan, H.; Bai, X.; Kong, Q.; Wei, W.; Shen, P.K.; Ni, B. Emerging artificial nitrogen cycle processes through novel electrochemical and photochemical synthesis. Mater. Today 2021, 46, 212–233. [Google Scholar] [CrossRef]
- Ling, C.; Zhang, Y.; Li, Q.; Bai, X.; Shi, L.; Wang, J. New mechanism for N2 reduction: The Essential Role of Surface Hydrogenation. J. Am. Chem. Soc. 2019, 141, 18264–18270. [Google Scholar] [CrossRef]
- Azofra, L.M.; Li, N.; MacFarlane, D.R.; Sun, C. Promising prospects for 2D d 2–d 4 M 3 C 2 transition metal carbides (MXenes) in N 2 capture and conversion into ammonia. Energy Environ. Sci. 2016, 9, 2545–2549. [Google Scholar] [CrossRef]
- Cheng, M.; Xiao, C.; Xie, Y. Photocatalytic nitrogen fixation: The role of defects in photocatalysts. J. Mater. Chem. A 2019, 7, 19616–19633. [Google Scholar] [CrossRef]
- Wagner, R.S.; Ellis, W.C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90. [Google Scholar] [CrossRef]
- Garnett, E.; Mai, L.; Yang, P. Introduction: 1D nanomaterials/nanowires. Chem. Rev. 2019, 119, 8955–8957. [Google Scholar] [CrossRef] [PubMed]
- Tersoff, J.; Ruoff, R.S. Structural properties of a carbon-nanotube crystal. Phys. Rev. Lett. 1994, 73, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Yamabe, T. Recent development of carbon nanotube. Synth. Met. 1995, 70, 1511–1518. [Google Scholar] [CrossRef]
- Qin, L.-C.; Zhao, X.; Hirahara, K.; Miyamoto, Y.; Ando, Y.; Iijima, S. The smallest carbon nanotube. Nature 2000, 408, 50. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Odom, T.W.; Lieber, C.M. Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes. Acc. Chem. Res. 1999, 32, 435–445. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, H. Formation of metal nanowires on suspended single-walled carbon nanotubes. Appl. Phys. Lett. 2000, 77, 3015–3017. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Tang, Y.H.; Wang, N.; Lee, C.S.; Bello, I.; Lee, S.T. One-dimensional growth mechanism of crystalline silicon nanowires. J. Cryst. Growth 1999, 197, 136–140. [Google Scholar] [CrossRef]
- Duan, X.; Lieber, C.M. General synthesis of compound semiconductor nanowires. Adv. Mater. 2000, 12, 298–302. [Google Scholar] [CrossRef]
- Sun, Y. Silver nanowires—Unique templates for functional nanostructures. Nanoscale 2010, 2, 1626–1642. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.M.; Lieber, C.M. A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. Science 1998, 279, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.-L.; Li, G.-R.; Ou, Y.-N.; Wang, Z.-L.; Su, C.-Y.; Tong, Y.-X. Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications. Chem. Commun. 2010, 46, 5021–5023. [Google Scholar] [CrossRef] [PubMed]
- Dharmaraj, N.; Kim, C.H.; Kim, H.Y. Pb(Zr0.5, Ti0.5)O3 nanofibres by electrospinning. Mater. Lett. 2005, 59, 3085–3089. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Satishkumar, B.C.; Govindaraj, A.; Nath, M. Nanotubes. ChemPhysChem 2001, 2, 78–105. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.-X.; Miao, J.; Tao, H.B.; Hung, S.-F.; Wang, H.-Y.; Yang, H.B.; Chen, J.; Chen, R.; Liu, B. One-Dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis. Small 2015, 11, 2115–2131. [Google Scholar] [CrossRef] [PubMed]
- Weng, B.; Liu, S.; Tang, Z.-R.; Xu, Y.-J. One-dimensional nanostructure based materials for versatile photocatalytic applications. RSC Adv. 2014, 4, 12685–12700. [Google Scholar] [CrossRef]
- Shang, H.; Chen, H.; Dai, M.; Hu, Y.; Gao, F.; Yang, H.; Xu, B.; Zhang, S.; Tan, B.; Zhang, X.; et al. A mixed-dimensional 1D Se–2D InSe van der Waals heterojunction for high responsivity self-powered photodetectors. Nanoscale Horiz. 2020, 5, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Cheong, J.Y.; Cho, S.-H.; Lee, J.; Jung, J.-W.; Kim, C.; Kim, I.-D. Multifunctional 1D Nanostructures toward Future Batteries: A Comprehensive Review. Adv. Funct. Mater. 2022, 32, 2208374. [Google Scholar] [CrossRef]
- Zhong, Y.; Peng, C.; He, Z.; Chen, D.; Jia, H.; Zhang, J.; Ding, H.; Wu, X. Interface engineering of heterojunction photocatalysts based on 1D nanomaterials. Catal. Sci. Technol. 2021, 11, 27–42. [Google Scholar] [CrossRef]
- Li, L.; Zhao, C.; Zhang, L.; Zhu, Y. γ-GeSe nanotubes: A one-dimensional semiconductor with high carrier mobility potential for photocatalytic water splitting. J. Mater. Chem. C 2021, 9, 15158–15164. [Google Scholar] [CrossRef]
- Wang, L.; Wu, W.; Liang, K.; Yu, X. Advanced strategies for improving the photocatalytic nitrogen fixation performance: A short review. Energy Fuels 2022, 36, 11278–11291. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Y.; Chen, M.; Shi, X.; Zhang, Y.; Cao, J.; Ho, W.; Lee, S.C. Roles of N-vacancies over porous g-C3N4 microtubes during photocatalytic NO x removal. ACS Appl. Mater. Interfaces 2019, 11, 10651–10662. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shi, H.; Yan, X.; Zuo, S.; Zhang, Y.; Wang, T.; Luo, S.; Yao, C.; Ni, C. Palygorskite immobilized direct Z-scheme nitrogen-doped carbon quantum dots/PrFeO3 for Photo-SCR Removal of NOx. ACS Sustain. Chem. Eng. 2018, 6, 10616–10627. [Google Scholar] [CrossRef]
- Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L. Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: A review. Sustain. Cities Soc. 2016, 27, 407–418. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.; Fan, X.; Wu, M.; Wang, M.; Cheng, R.; Zhang, L.; Yao, H.; Shi, J. Core-shell LaPO4/g-C3N4 nanowires for highly active and selective CO2 reduction. Appl. Catal. B 2017, 201, 629–635. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, J.; Ge, L.; Han, C.; Qiu, P.; Fang, S. Synthesis of novel AuPd nanoparticles decorated one-dimensional ZnO nanorod arrays with enhanced photoelectrochemical water splitting activity. J. Colloid Interface Sci. 2016, 483, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Mei, F.; Dai, K.; Zhang, J.; Li, W.; Liang, C. Construction of Ag SPR-promoted step-scheme porous g-C3N4/Ag3VO4 heterojunction for improving photocatalytic activity. Appl. Surf. Sci. 2019, 488, 151–160. [Google Scholar] [CrossRef]
- Wang, J.; Lin, W.; Ran, Y.; Cui, J.; Wang, L.; Yu, X.; Zhang, Y. Nanotubular TiO2 with Remedied defects for photocatalytic nitrogen fixation. J. Phys. Chem. C 2020, 124, 1253–1259. [Google Scholar] [CrossRef]
- Li, C.; Gu, M.; Gao, M.; Liu, K.; Zhao, X.; Cao, N.; Feng, J.; Ren, Y.; Wei, T.; Zhang, M. N-doping TiO2 hollow microspheres with abundant oxygen vacancies for highly photocatalytic nitrogen fixation. J. Colloid Interface Sci. 2022, 609, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.; Liao, Y.; Wu, Y.; An, Y.; Lin, J.; Gu, Z.; Jiang, M.; Hu, S.; Wang, X. RuO2-loaded TiO2–MXene as a high performance photocatalyst for nitrogen fixation. J. Phys. Chem. Solids 2020, 136, 109141. [Google Scholar] [CrossRef]
- Yin, S.; Liu, S.; Zhang, H.; Jiao, S.; Xu, Y.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Engineering one-Dimensional AuPd Nanospikes for Efficient Electrocatalytic Nitrogen Fixation. ACS Appl. Mater. Interfaces 2021, 13, 20233–20239. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, L.; Hu, L.; Chen, G.; Xin, H.; Feng, X. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, B.; Ji, Y.; Sun, M.; Wu, T.; Yin, R.; Zhu, X.; Li, Y.; Shao, Q.; Huang, X. A general strategy to glassy M-Te (M = Ru, Rh, Ir) porous nanorods for efficient electrochemical N2 fixation. Adv. Mater. 2020, 32, 1907112. [Google Scholar] [CrossRef]
- Jiao, X.; Chen, Z.; Li, X.; Sun, Y.; Gao, S.; Yan, W.; Wang, C.; Zhang, Q.; Lin, Y.; Luo, Y. Defect-mediated electron–hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 7586–7594. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Gu, B.; Jiao, X.; Sun, Y.; Zu, X.; Yang, F.; Zhu, W.; Wang, C.; Feng, Z.; Ye, B.; et al. Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers. J. Am. Chem. Soc. 2017, 139, 3438–3445. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Yang, H.; Wang, S.; Gao, J.; Hou, H.; Yang, W. MOF-derived hexagonal In2O3 microrods decorated with g-C3N4 ultrathin nanosheets for efficient photocatalytic hydrogen production. J. Mater. Chem. C 2021, 9, 5343–5348. [Google Scholar] [CrossRef]
- Bariki, R.; Das, K.; Pradhan, S.K.; Prusti, B.; Mishra, B. MOF-derived hollow tubular In2O3/MIIIn2S4 (MII: Ca, Mn, and Zn) heterostructures: Synergetic charge-transfer mechanism and excellent photocatalytic performance to boost activation of small atmospheric molecules. ACS Appl. Energy Mater. 2022, 5, 11002–11017. [Google Scholar] [CrossRef]
- Dong, G.; Huang, X.; Bi, Y. Anchoring Black Phosphorus Quantum Dots on Fe-Doped W18O49 Nanowires for Efficient Photocatalytic Nitrogen Fixation. Angew. Chem. 2022, 134, e202204271. [Google Scholar] [CrossRef]
- Yang, J.; Ruan, Z.; Jiang, S.; Xia, P.; Yang, Q.; Zhang, Q.; Xiao, C.; Xie, Y. Ce-doped W18O49 nanowires for tuning N2 activation toward direct nitrate photosynthesis. J. Phys. Chem. Lett. 2021, 12, 11295–11302. [Google Scholar] [CrossRef]
- Li, Y.; Qian, F.; Xiang, J.; Lieber, C. Nanowire electronic and optoelectronic devices. Mater. Today 2006, 9, 18–27. [Google Scholar] [CrossRef]
- Helveg, S.; López-Cartes, C.; Sehested, J.; Hansen, P.L.; Clausen, B.S.; Rostrup-Nielsen, J.R.; Abild-Pedersen, F.; Nørskov, J. Atomic-scale imaging of carbon nanofibre growth. Nature 2004, 427, 426–429. [Google Scholar] [CrossRef] [PubMed]
- Meister, S.; Peng, H.; McIlwrath, K.; Jarausch, K.; Zhang, X.F.; Cui, Y. Synthesis and characterization of phase-change nanowires. Nano Lett. 2006, 6, 1514–1517. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Lieber, C. Nanorod-superconductor composites: A pathway to materials with high critical current densities. Science 1996, 273, 1836–1840. [Google Scholar] [CrossRef]
- Park, W.I.; Kim, D.H.; Jung, S.-W.; Yi, G.-C. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett. 2002, 80, 4232–4234. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, D.; Han, S.; Li, C.; Tang, T.; Jin, W.; Liu, X.; Lei, B.; Zhou, C. Laser ablation synthesis and electron transport studies of tin oxide nanowires. Adv. Mater. 2003, 15, 1754–1757. [Google Scholar] [CrossRef]
- Udom, I.; Ram, M.K.; Stefanakos, E.K.; Hepp, A.F.; Goswami, D.Y. One dimensional-ZnO nanostructures: Synthesis, properties and environmental applications. Mater. Sci. Semicond. Process. 2013, 16, 2070–2083. [Google Scholar] [CrossRef]
- Miao, J.; Liu, B. II–VI semiconductor nanowires: ZnO. In Semiconductor Nanowires; Elsevier: Amsterdam, The Netherlands, 2015; pp. 3–28. [Google Scholar]
- Kislyuk, V.; Dimitriev, O. Nanorods and nanotubes for solar cells. J. Nanosci. Nanotechnol. 2008, 8, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Anastasescu, C.; Mihaiu, S.; Preda, S.; Zaharescu, M. 1D Oxide Nanostructures Obtained by Sol-Gel and Hydrothermal Methods; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Zargari, S.; Yaghoubi Berijani, M.; Rahimi, R. Synthesis of ZnO nanorods via coprecipitation method and its sensitizing with tetrakis (4-carboxy phenyl) porphyrin and its tin complex to enhance the visible light photocatalytic activity. J. Nanomater. 2014, 4, 161. [Google Scholar]
- Soares, A.S.; Araujo, F.P.; Osajima, J.A.; Guerra, Y.; Viana, B.C.; Peña-Garcia, R. Nanotubes/nanorods-like structures of La-doped ZnO for degradation of Methylene Blue and Ciprofloxacin. J. Photochem. Photobiol. A 2024, 447, 115235. [Google Scholar] [CrossRef]
- Wang, F.; Yang, H.; Zhang, H.; Jiang, J. Growth process and enhanced photocatalytic performance of CuBi2O4 hierarchical microcuboids decorated with AuAg alloy nanoparticles. J. Mater. Sci. Mater. Electron. 2018, 29, 1304–1316. [Google Scholar] [CrossRef]
- Koli, V.B.; Murugan, G.; Ke, S.-C. Self-assembled synthesis of porous iron-doped graphitic carbon nitride nanostructures for efficient photocatalytic hydrogen evolution and nitrogen fixation. Nanomaterials 2023, 13, 275. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhu, Y.-J.; Wang, K.-W.; Zhao, K.-L. Surfactant-free solvothermal synthesis of hydroxyapatite nanowire/nanotube ordered arrays with biomimetic structures. CrystEngComm 2011, 13, 1858–1863. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, W.; Xu, C.; Xiao, N.; Huang, Y.; Yu, D.Y.W.; Hng, H.H.; Yan, Q. One-step solvothermal synthesis of single-crystalline TiOF2 nanotubes with high lithium-ion battery performance. Chem. Eur. J. 2012, 18, 4026–4030. [Google Scholar] [CrossRef] [PubMed]
- Alkanad, K.; Hezam, A.; Al-Zaqri, N.; Bajiri, M.A.; Alnaggar, G.; Drmosh, Q.A.; Almukhlifi, H.A.; Neratur Krishnappagowda, L. One-Step Hydrothermal Synthesis of Anatase TiO2 Nanotubes for Efficient Photocatalytic CO2 Reduction. ACS Omega 2022, 7, 38686–38699. [Google Scholar] [CrossRef] [PubMed]
- Yong, S.-M.; Muralidharan, P.; Jo, S.H.; Kim, D.K. One-step hydrothermal synthesis of CdTe nanowires with amorphous carbon sheaths. Mater. Lett. 2010, 64, 1551–1554. [Google Scholar] [CrossRef]
- Vijayakumar; Shivaraj, B.W.; Manjunatha, C.; Abhishek, B.; Nagaraju, G.; Panda, P.K. Hydrothermal synthesis of ZnO nanotubes for CO gas sensing. Sens. Int. 2020, 1, 100018. [Google Scholar] [CrossRef]
- Ge, M.; Li, Q.; Cao, C.; Huang, J.; Li, S.; Zhang, S.; Chen, Z.; Zhang, K.; Al-Deyab, S.S.; Lai, Y.J. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv. Sci. 2017, 4, 1600152. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Q.; Zhan, X.; Wang, F.; Safdar, M.; He, J. Visible light driven type II heterostructures and their enhanced photocatalysis properties: A review. Nanoscale 2013, 5, 8326–8339. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ying, J. Sol−gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater. 1999, 11, 3113–3120. [Google Scholar] [CrossRef]
- Kaur, A.; Bajaj, B.; Kaushik, A.; Saini, A.; Sud, D. A review on template assisted synthesis of multi-functional metal oxide nanostructures: Status and prospects. Mater. Sci. Eng. B 2022, 286, 116005. [Google Scholar] [CrossRef]
- Sadeghzadeh Attar, A.; Sasani Ghamsari, M.; Hajiesmaeilbaigi, F.; Mirdamadi, S.; Katagiri, K.; Koumoto, K. Synthesis and characterization of anatase and rutile TiO2 nanorods by template-assisted method. J. Mater. Sci. 2008, 43, 5924–5929. [Google Scholar] [CrossRef]
- Pashchanka, M.; Engstler, J.; Schneider, J.J.; Siozios, V.; Fasel, C.; Hauser, R.; Kinski, I.; Riedel, R.; Lauterbach, S.; Kleebe, H.J. Polymer-derived sioc nanotubes and nanorods via a template approach. Eur. J. Inorg. Chem. 2009, 23, 3496–3506. [Google Scholar] [CrossRef]
- Bhattarai, D.P.; Hwang, T.I.; Kim, J.I.; Lee, J.H.; Chun, S.; Kim, B.-S.; Park, C.H.; Kim, C. Synthesis of polypyrrole nanorods via sacrificial removal of aluminum oxide nanopore template: A study on cell viability, electrical stimulation and neuronal differentiation of PC12 cells. Mater. Sci. Eng. C 2020, 107, 110325. [Google Scholar] [CrossRef] [PubMed]
- Caruso, F.; Caruso, R.A.; Mohwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 1998, 282, 1111–1114. [Google Scholar] [CrossRef] [PubMed]
- Yong, K.-T.; Sahoo, Y.; Swihart, M.T.; Prasad, P. Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold–silver core–shell nanostructures. Colloids Surf. A 2006, 290, 89–105. [Google Scholar] [CrossRef]
- Poolakkandy, R.R.; Menamparambath, M. Soft-template-assisted synthesis: A promising approach for the fabrication of transition metal oxides. Nanoscale Adv. 2020, 2, 5015–5045. [Google Scholar] [CrossRef] [PubMed]
- Tiano, A.L.; Koenigsmann, C.; Santulli, A.C.; Wong, S. Solution-based synthetic strategies for one-dimensional metal-containing nanostructures. Chem. Commun. 2010, 46, 8093–8130. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, Y.; Lu, S.; Xu, C.; Shao, C.; Wang, C.; Zhang, J.; Lu, Y.; Shen, D.; Fan, X. Optical properties of ZnO and ZnO: In nanorods assembled by sol-gel method. J. Chem. Phys. 2005, 123, 134701. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, X.; Huang, W.; Sebastian, P.; Gamboa, S. Sol–gel template synthesis of highly ordered MnO2 nanowire arrays. J. Power Sources 2005, 140, 211–215. [Google Scholar] [CrossRef]
- Matysiak, W.; Tański, T.; Smok, W.; Polishchuk, O. Synthesis of hybrid amorphous/crystalline SnO2 1D nanostructures: Investigation of morphology, structure and optical properties. Sci. Rep. 2020, 10, 14802. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Reyes, M.; Dorantes-Rosales, H. A simple route to obtain TiO2 nanowires by the sol–gel method. J. Sol-Gel Sci. Technol. 2011, 59, 658–661. [Google Scholar] [CrossRef]
- Whitney, T.; Searson, P.; Jiang, J.; Chien, C. Fabrication and magnetic properties of arrays of metallic nanowires. Science 1993, 261, 1316–1319. [Google Scholar] [CrossRef] [PubMed]
- She, G.; Mu, L.; Shi, W. Electrodeposition of One-dimensional nanostructures. Recent Pat. Nanotechnol. 2009, 3, 182–191. [Google Scholar] [CrossRef]
- Ge, M.; Cao, C.; Huang, J.; Li, S.; Chen, Z.; Zhang, K.-Q.; Al-Deyab, S.; Lai, Y. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J. Mater. Chem. A 2016, 4, 6772–6801. [Google Scholar] [CrossRef]
- Győri, Z.; Kónya, Z.; Kukovecz, Á. Visible light activation photocatalytic performance of PbSe quantum dot sensitized TiO2 Nanowires. Appl. Catal. 2015, 179, 583–588. [Google Scholar] [CrossRef]
- Ahn, S.H.; Chi, W.S.; Park, J.T.; Koh, J.K.; Roh, D.K.; Kim, J.H. Direct assembly of preformed nanoparticles and graft copolymer for the fabrication of micrometer-thick, organized TiO2 films: High efficiency solid-state dye-sensitized solar cells. Adv. Mater. 2012, 24, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Tan, X.; Liu, K.; Lei, J.; Wang, L.; Zhang, J. TiO2 (B) nanotubes with ultrathin shell for highly efficient photocatalytic fixation of nitrogen. Catal. Today 2019, 335, 214–220. [Google Scholar] [CrossRef]
- Chang, S.; Xu, X. Au nanocrystals decorated TiO2 nanotubes for photocatalytic nitrogen fixation into ammonia. Inorg. Chem. Front. 2020, 7, 620–624. [Google Scholar] [CrossRef]
- Huang, M.H.; Wu, Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Adv. Mater. 2001, 13, 113–116. [Google Scholar] [CrossRef]
- Pan, Z.W.; Dai, Z.R.; Wang, Z.L. Nanobelts of Semiconducting Oxides. Science 2001, 291, 1947–1949. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Sultana, S.; Tripathy, S.P.; Parida, K. Aggrandizing the Photoactivity of ZnO Nanorods toward N2 Reduction and H2 Evolution through Facile In Situ Coupling with NixPy. ACS Sustain. Chem. Eng. 2021, 9, 6305–6317. [Google Scholar] [CrossRef]
- Wang, L.; Li, M.; Zhang, Q.; Li, F.; Xu, L. Constructing electron transfer pathways and active centers over W18O49 nanowires by doping Fe3+ and incorporating g-C3N5 for enhanced photocatalytic nitrogen fixation. Inorg. Chem. Front. 2021, 8, 3566–3575. [Google Scholar] [CrossRef]
- Vu, M.-H.; Nguyen, C.-C.; Do, T.-O. Synergistic Effect of Fe Doping and Plasmonic Au Nanoparticles on W18O49 Nanorods for Enhancing Photoelectrochemical Nitrogen Reduction. ACS Sustain. Chem. Eng. 2020, 8, 12321–12330. [Google Scholar] [CrossRef] [PubMed]
- Hui, X.; Li, L.; Xia, Q.; Hong, S.; Hao, L.; Robertson, A.W.; Sun, Z. Interface engineered Sb2O3/W18O49 heterostructure for enhanced visible-light-driven photocatalytic N2 reduction. Chem. Eng. J. 2022, 438, 135485. [Google Scholar] [CrossRef]
- Shang, H.; Wang, Y.; Jia, H.; Qu, M.; Ye, X.; Zhu, Q.; Zhang, D.; Wang, D.; Li, G.; Li, H. Constructing asymmetric active sites on defective Ru/W18 O49 for photocatalytic nitrogen fixation. Catal. Sci. Technol. 2023, 13, 854–861. [Google Scholar] [CrossRef]
- Xing, P.; Chen, P.; Chen, Z.; Hu, X.; Lin, H.; Wu, Y.; Zhao, L.; He, Y. Novel Ternary MoS2/C-ZnO Composite with efficient performance in photocatalytic NH3 synthesis under simulated sunlight. ACS Sustain. Chem. Eng. 2018, 6, 14866–14879. [Google Scholar] [CrossRef]
- Li, X.; Wang, W.; Jiang, D.; Sun, S.; Zhang, L.; Sun, X. Efficient Solar-Driven Nitrogen Fixation over Carbon–Tungstic-Acid Hybrids. Chem. Eur. J. 2016, 22, 13819–13822. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zheng, X.; Zhang, W.; Kheradmand, A.; Gu, S.; Kobielusz, M.; Macyk, W.; Li, H.; Huang, J.; Jiang, Y. Near-Infrared-Triggered Nitrogen Fixation over Upconversion Nanoparticles Assembled Carbon Nitride Nanotubes with Nitrogen Vacancies. ACS Appl. Mater. Interfaces 2021, 13, 32937–32947. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhou, W.; Zhang, R.; Zeng, J.; Du, Y.; Qi, S.; Cong, C.; Ding, C.; Huang, X.; Wen, G. Mass production of large-sized, nonlayered 2D nanosheets: Their directed synthesis by a rapid “gel-blowing” strategy, and applications in Li/Na storage and catalysis. Adv. Mater. 2018, 30, 1803569. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gu, M.; Shi, T.; Cui, W.; Zhang, X.; Dong, F.; Cheng, J.; Fan, J.; Lv, K. Carbon vacancy in C3N4 nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity. Appl. Catal. B 2020, 262, 118281. [Google Scholar] [CrossRef]
- Zeng, Y.; Liu, X.; Liu, C.; Wang, L.; Xia, Y.; Zhang, S.; Luo, S.; Pei, Y. Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity. Appl. Catal. B 2018, 224, 1–9. [Google Scholar] [CrossRef]
- Zhang, D.; He, W.; Ye, J.; Gao, X.; Wang, D.; Song, J. Polymeric parbon nitride-derived photocatalysts for Wwater splitting and nitrogen fixation. Small 2021, 17, 2005149. [Google Scholar] [CrossRef] [PubMed]
- Hua, C.; Dong, X.; Zheng, N.; Zhang, X.; Xue, M. In situ fabrication of self-assembled BiOBrxI1−x coated on carbon nanofibers for efficient solar light-driven photocatalytic nitrogen fixation. Sustain. Energy Fuels 2020, 4, 6196–6202. [Google Scholar] [CrossRef]
- He, Z.; Wang, Y.; Dong, X.; Zheng, N.; Ma, H.; Zhang, X. Indium sulfide nanotubes with sulfur vacancies as an efficient photocatalyst for nitrogen fixation. RSC Adv. 2019, 9, 21646–21652. [Google Scholar] [CrossRef]
- Jia, L.; Tan, X.; Yu, T.; Ye, J. Mixed Metal Sulfides for the Application of Photocatalytic Energy Conversion. Energy Fuels 2022, 36, 11308–11322. [Google Scholar] [CrossRef]
- Jamal, F.; Rafique, A.; Moeen, S.; Haider, J.; Nabgan, W.; Haider, A.; Imran, M.; Nazir, G.; Alhassan, M.; Ikram, M.; et al. Review of Metal Sulfide Nanostructures and their Applications. ACS Appl. Nano Mater. 2023, 6, 7077–7106. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, X.; Xie, F.; Tang, Z.; Wang, X. Efficient charge separation between ZnIn2S4 nanoparticles and polyaniline nanorods for nitrogen photofixation. New J. Chem. 2020, 44, 7350–7356. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Q.; Chen, Y.; Pei, L.; Bao, L.; Yuan, Y.-J. Mixed-Valent Cobalt-Modulated Tungsten Trioxide Nanorod Arrays for Improved Photocatalytic N2 Fixation. J. Phys. Chem. C 2021, 125, 21997–22005. [Google Scholar] [CrossRef]
- Ying, Z.; Chen, S.; Zhang, S.; Peng, T.; Li, R. Efficiently enhanced N2 photofixation performance of sea-urchin-like W18O49 microspheres with Mn-doping. Appl. Catal. B 2019, 254, 351–359. [Google Scholar] [CrossRef]
- Wang, T.; Qu, S.; Wang, J.; Xu, M.; Qu, C.; Feng, M. W/Mo-heteropoly blue-modified defective W18O49 as Z-Scheme heterostructure photocatalysts for efficient N2 fixation. J. Alloys Compd. 2023, 938, 168631. [Google Scholar] [CrossRef]
- Wang, L.; Wang, S.; Cui, D.; Li, M.; Yang, X.; Li, F.; Xu, L. Z-scheme heterojunctions with double vacancies semiconductors MoO3−x and Fe-doped W18O49 for photocatalytic nitrogen fixation. J. Alloys Compd. 2022, 927, 167003. [Google Scholar] [CrossRef]
- Sun, B.; Qiu, P.; Liang, Z.; Xue, Y.; Zhang, X.; Yang, L.; Cui, H.; Tian, J. The fabrication of 1D/2D CdS nanorod@Ti3C2 MXene composites for good photocatalytic activity of hydrogen generation and ammonia synthesis. Chem. Eng. J. 2021, 406, 127177. [Google Scholar] [CrossRef]
- Sun, B.; Liang, Z.; Qian, Y.; Xu, X.; Han, Y.; Tian, J. Sulfur Vacancy-Rich O-Doped 1T-MoS2 Nanosheets for Exceptional Photocatalytic Nitrogen Fixation over CdS. ACS Appl. Mater. Interfaces 2020, 12, 7257–7269. [Google Scholar] [CrossRef] [PubMed]
SL No. | 1D-Photocatalyst | Morphology | Light Source | Performance for Photocatalytic NH3 Generation | Reference |
---|---|---|---|---|---|
1. | TiO2 (B) | Nanotubes | 300 Xe lamp (Sunlight)/ 300Xe lamp (full wavelength) | 106.6 µmol g−1/ 318 µmol g−1 | [106] |
2. | TiO2 | Nanotubes | 300 Xe lamp (full wavelength) | 1.2 mmol·L–1·h–1 | [55] |
3. | Au- TiO2 | Nanotubes | 500 W high-pressure mercury lamp | 58.7 μmol g−1 | [107] |
4. | Bi5O7Br | nanotubes | 300W Xe-lamp (>400 nm) | 1.38 mmol g−1 h−1 | [127] |
5. | Mo- W18O49 | Nanowires | 300 Xe lamp (full wavelength) | 95.5 μmol gcat−1 h−1 | [128] |
6. | Mn- W18O49 | Nanowires | 300 W Xe-lamp (λ > 400 nm) | 97.9 μmol g−1 h−1 | [129] |
7. | Ce- W18O49 | Nanowires | 300 W Xe lamp (1500 mW/cm2) | 319.97 μg g−1 h−1 | [66] |
8. | Fe- W18O49 | Nanowires | Xe lamp (power density of 100 mW cm−2) | 375.2 μmol g−1 | [65] |
9. | Fe- W18O49/g-C3N5 | Nanowires | 300 W Xe-lamp (simulated sunlight) | 131.6 μmol g−1 h−1, | [111] |
10. | W/Mo- W18O49 | Nanowires | 300 Xe lamp (simulated sunlight) | 184.54 µmol g−1 h−1 | [130] |
11. | Sb2O3@W18O49 | Nanowires | 300 W xenon lamp (λ ≥ 420 nm) | 600.1 μg h −1 gcat−1 | [113] |
12. | NaYF4:Yb,Tm/g-C3N4 | Nanotubes | 300 W Xe lamp (>420nm) | 1.72 mmol L–1 gcat–1 | [117] |
13. | CdS @Ti3C2 MXene | Nanorod | 300 W Xe-lamp (simulated sunlight) | 293.06 μmol L−1 h−1 | [131] |
14. | In2S3 | nanotubes | 300 W Xe-lamp (simulated sunlight) | 52.49 μmol h−1 g−1 | [123] |
15. | PANI@ZnIn2S4 | Nanorods | visible light irradiation | 290 μmol L−1 h−1 | [126] |
16. | 1T-MoS2/CdS | Nanorods | visible light, (780 nm > λ > 420 nm) | (8220.83 μmol L–1 h–1 g–1) | [132] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ragesh Nath R.; Deshmukh, S.P.; Kamble, S.J.; Koli, V.B. Recent Advances in Application of 1D Nanomaterials for Photocatalytic Nitrogen Fixation. Nitrogen 2024, 5, 349-372. https://doi.org/10.3390/nitrogen5020023
Ragesh Nath R., Deshmukh SP, Kamble SJ, Koli VB. Recent Advances in Application of 1D Nanomaterials for Photocatalytic Nitrogen Fixation. Nitrogen. 2024; 5(2):349-372. https://doi.org/10.3390/nitrogen5020023
Chicago/Turabian StyleRagesh Nath R., Shamkumar P. Deshmukh, Sachin J. Kamble, and Valmiki B. Koli. 2024. "Recent Advances in Application of 1D Nanomaterials for Photocatalytic Nitrogen Fixation" Nitrogen 5, no. 2: 349-372. https://doi.org/10.3390/nitrogen5020023
APA StyleRagesh Nath R., Deshmukh, S. P., Kamble, S. J., & Koli, V. B. (2024). Recent Advances in Application of 1D Nanomaterials for Photocatalytic Nitrogen Fixation. Nitrogen, 5(2), 349-372. https://doi.org/10.3390/nitrogen5020023