“Alperujo” Compost Improves Nodulation and Symbiotic Nitrogen Fixation of Soybean Inoculated with Bradyrhizobium diazoefficiens
Abstract
:1. Introduction
2. Materials and Methods
2.1. AL Compost
2.2. Cultivation of B. diazoefficiens
2.3. Soybean Inoculation and Growth
2.4. Physiological Determinations
2.5. Experimental Design and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Voisin, A.S.; Guéguen, J.; Huyghe, C.; Jeuffroy, M.H.; Magrini, M.B.; Meynard, J.M.; Mougel, C.; Pellerin, S.; Pelzer, E. Legumes for feed, food, biomaterials and bioenergy in Europe: A review. Agron. Sustain. Dev. 2014, 34, 361–380. [Google Scholar] [CrossRef]
- Herridge, D.F.; Peoples, M.B.; Boddey, R.M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 2008, 311, 1–18. [Google Scholar] [CrossRef]
- Poole, P.; Ramachandran, V.; Terpolilli, J. Rhizobia: From saprophytes to endosymbionts. Nat. Rev. Microbiol. 2018, 16, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Tortosa, G.; Alburquerque, J.A.; Ait-Baddi, G.; Cegarra, J. The production of commercial organic amendments and fertilisers by composting of two-phase olive mill waste (“alperujo”). J. Clean. Prod. 2012, 26, 48–55. [Google Scholar] [CrossRef]
- Tortosa, G.; Alburquerque, J.A.; Bedmar, E.J.; Ait-Baddi, G.; Cegarra, J. Strategies to produce commercial liquid organic fertilisers from “alperujo” composts. J. Clean. Prod. 2014, 82, 37–44. [Google Scholar] [CrossRef]
- Tondello, A.; Fasolo, A.; Marcato, S.; Treu, L.; Bonato, T.; Zanardi, W.; Concheri, G.; Squartini, A.; Baldan, B. Characterization of bacterial communities isolated from municipal waste compost and screening of their plant-interactive phenotypes. Sci. Total Environ. 2022, 806, 150592. [Google Scholar] [CrossRef] [PubMed]
- Hayat, R.; Sheirdil, R.A.; Iftikhar-ul-Hassan, M.; Ahmed, I. Characterization and identification of compost bacteria based on 16S r-RNA gene sequencing. Ann. Microbiol. 2013, 63, 905–912. [Google Scholar] [CrossRef]
- Ulzen, J.; Abaidoo, R.C.; Ewusi-Mensah, N.; Osei, O.; Masso, C.; Opoku, A. Organic manure improves soybean response to rhizobia inoculant and P-fertilizer in northern Ghana. Front. Agron. 2020, 2, 9. [Google Scholar] [CrossRef]
- Vergara Cid, C.; Ferreyroa, G.V.; Pignata, M.L.; Rodriguez, J.H. Biosolid Compost with wood shavings and yard trimmings alleviates stress and improves grain quality in soybean grown in lead polluted soils. Environ. Sci. Pollut. Res. 2020, 27, 27786–27795. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.S.; Nogueira, M.A.; Hungria, M. Microbial inoculants: Reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Expr. 2019, 9, 205. [Google Scholar] [CrossRef] [PubMed]
- Tortosa, G.; Pacheco, P.J.; Hidalgo-García, A.; Granados, A.; Delgado, A.; Mesa, S.; Bedmar, E.J.; Delgado, M.J. Copper modulates nitrous oxide emissions from soybean root nodules. Environ. Exp. Bot. 2020, 180, 104262. [Google Scholar] [CrossRef]
- Tortosa, G.; Parejo, S.; Cabrera, J.J.; Bedmar, E.J.; Mesa, S. Oxidative Stress Produced by Paraquat Reduces Nitrogen Fixation in Soybean-Bradyrhizobium diazoefficiens Symbiosis by Decreasing Nodule Functionality. Nitrogen 2021, 2, 30–40. [Google Scholar] [CrossRef]
- Pascual, J.A.; Ceglie, F.; Tuzel, Y.; Koller, M.; Koren, A.; Hitchings, R.; Tittarelli, F. Organic substrate for transplant production in organic nurseries. A review. Agron. Sustain. Dev. 2018, 38, 35. [Google Scholar] [CrossRef]
- Tortosa, G.; González-Gordo, S.; Ruiz, C.; Bedmar, E.; Palma, J. “Alperujo” compost improves the ascorbate (Vitamin C) content in pepper (Capsicum annuum L.) fruits and influences their oxidative metabolism. Agronomy 2018, 8, 82. [Google Scholar] [CrossRef]
- Albareda, M.; Rodríguez-Navarro, D.N.; Camacho, M.; Temprano, F.J. Alternatives to peat as a carrier for rhizobia inoculants: Solid and liquid formulations. Soil Biol. Biochem. 2008, 40, 2771–2779. [Google Scholar] [CrossRef]
- Ben-Laouane, R.; Ait-El-Mokhtar, M.; Anli, M.; Boutasknit, A.; Ait Rahou, Y.; Raklami, A.; Oufdou, K.; Wahbi, S.; Meddich, A. Green compost combined with mycorrhizae and rhizobia: A strategy for improving alfalfa growth and yield under field conditions. Gesunde Pflanz. 2021, 73, 193–207. [Google Scholar] [CrossRef]
- Bezabeh, M.W.; Haile, M.; Sogn, T.A.; Eich-Greatorex, S. Yield, nutrient uptake, and economic return of faba bean (Vicia faba L.) in calcareous soil as affected by compost types. J. Agric. Food Res. 2021, 6, 100237. [Google Scholar] [CrossRef]
- Abbott, L.K.; Macdonald, L.M.; Wong, M.T.F.; Webb, M.J.; Jenkins, S.N.; Farrell, M. Potential roles of biological amendments for profitable grain production: A review. Agric. Ecosyst. Environ. 2018, 256, 34–50. [Google Scholar] [CrossRef]
- Rady, M.M.; Semida, W.M.; Hemida, K.A.; Abdelhamid, M.T. The effect of compost on growth and yield of Phaseolus vulgaris plants grown under saline soil. Int. J. Recycl. Org. Waste Agric. 2016, 5, 311–321. [Google Scholar] [CrossRef]
- Gonzalez, R.F.; Cooperband, L.R. Compost effects on soil physical properties and field nursery production. Compost Sci. Util. 2002, 10, 226–237. [Google Scholar] [CrossRef]
Treatment | Plant Height (cm) | Trifoliate Leaves | SDW (g Plant−1) | RDW (g Plant−1) | SDW/RDW (Plant−1) |
---|---|---|---|---|---|
Control | 15 b | 2 b | 1.23 c | 0.32 c | 3.84 a |
D0 | 24 a | 3 a | 1.42 b | 0.45 b | 3.16 b |
D1 | 28 a | 4 a | 1.51 a | 0.61 a | 2.48 c |
D2 | 27 a | 4 a | 1.49 a | 0.67 a | 2.22 c |
D3 | 26 a | 4 a | 1.48 a | 0.62 a | 2.39 c |
Treatment | NN (Plant−1) | NFW (g Plant−1) | NFW/NN (mg Nodule−1) | Lb (mg NFW−1) |
---|---|---|---|---|
Control | - | - | - | - |
D0 | 65 b | 0.61 b | 6.82 c | 6.82 c |
D1 | 70 ab | 0.63 b | 7.12 b | 7.12 b |
D2 | 76 a | 0.66 a | 7.25 a | 7.25 a |
D3 | 78 a | 0.62 b | 7.32 a | 7.32 a |
Treatment | Nshoot (mg Plant−1) | Nroot (mg Plant−1) | Nnodules (mg Plant−1) |
---|---|---|---|
D0 | 21.47 b | 4.31 c | 2.31 c |
D1 | 26.21 a | 5.89 b | 3.12 b |
D2 | 28.26 a | 6.78 a | 3.56 a |
D3 | 26.31 a | 6.04 ab | 2.91 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tortosa, G.; Mesa, S.; Delgado, M.J.; Amaya-Gómez, C.V. “Alperujo” Compost Improves Nodulation and Symbiotic Nitrogen Fixation of Soybean Inoculated with Bradyrhizobium diazoefficiens. Nitrogen 2023, 4, 223-230. https://doi.org/10.3390/nitrogen4020015
Tortosa G, Mesa S, Delgado MJ, Amaya-Gómez CV. “Alperujo” Compost Improves Nodulation and Symbiotic Nitrogen Fixation of Soybean Inoculated with Bradyrhizobium diazoefficiens. Nitrogen. 2023; 4(2):223-230. https://doi.org/10.3390/nitrogen4020015
Chicago/Turabian StyleTortosa, Germán, Socorro Mesa, María J. Delgado, and Carol V. Amaya-Gómez. 2023. "“Alperujo” Compost Improves Nodulation and Symbiotic Nitrogen Fixation of Soybean Inoculated with Bradyrhizobium diazoefficiens" Nitrogen 4, no. 2: 223-230. https://doi.org/10.3390/nitrogen4020015
APA StyleTortosa, G., Mesa, S., Delgado, M. J., & Amaya-Gómez, C. V. (2023). “Alperujo” Compost Improves Nodulation and Symbiotic Nitrogen Fixation of Soybean Inoculated with Bradyrhizobium diazoefficiens. Nitrogen, 4(2), 223-230. https://doi.org/10.3390/nitrogen4020015