Environmental Impact Assessment for Animal Waste, Organic and Synthetic Fertilizers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fertilizers
2.2. Life Cycle Assessment
- Fine particulate matter formation (kg PM2.5 equivalent);
- Fossil resource scarcity (kg oil-eq);
- Freshwater ecotoxicity (kg 1,4-DCB);
- Freshwater eutrophication (kg P equivalent);
- Global warming (kg CO2 equivalent);
- Human carcinogenic toxicity (kg 1,4-DCB);
- Human non-carcinogenic toxicity (kg 1,4-DCB);
- Ionizing radiation (kBq Co-60 equivalent);
- Land use (m2a crop equivalent);
- Marine ecotoxicity (kg 1,4-DCB);
- Marine eutrophication (kg N equivalent);
- Mineral resource scarcity (kg Cu equivalent);
- Ozone formation, Human health (kg NOx equivalent);
- Ozone formation, Terrestrial ecosystems (kg NOx equivalent);
- Stratospheric ozone depletion (kg CFC11 equivalent);
- Terrestrial acidification kg (SO2 equivalent);
- Terrestrial ecotoxicity (kg 1,4-DCB);
- Water consumption (m3).
2.3. Data Treatment and Statistical Analysis
2.4. LCA Assumptions and Limitations
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X. Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security. Land 2022, 11, 484. [Google Scholar] [CrossRef]
- Liang, G. Nitrogen Fertilization Mitigates Global Food Insecurity by Increasing Cereal Yield and Its Stability. Glob. Food Secur. 2022, 34, 100652. [Google Scholar] [CrossRef]
- Bebber, D.P.; Richards, V.R. A Meta-Analysis of the Effect of Organic and Mineral Fertilizers on Soil Microbial Diversity. Appl. Soil Ecol. 2022, 175, 104450. [Google Scholar] [CrossRef]
- Xu, Y.; Elbakidze, L.; Yen, H.; Arnold, J.G.; Gassman, P.W.; Hubbart, J.; Strager, M.P. Integrated Assessment of Nitrogen Runoff to the Gulf of Mexico. Resour. Energy Econ. 2022, 67, 101279. [Google Scholar] [CrossRef]
- Badrzadeh, N.; Samani, J.M.V.; Mazaheri, M.; Kuriqi, A. Evaluation of Management Practices on Agricultural Nonpoint Source Pollution Discharges into the Rivers under Climate Change Effects. Sci. Total Environ. 2022, 838, 156643. [Google Scholar] [CrossRef]
- Hossain, M.E.; Islam, M.S.; Sujan, M.H.K.; Tuhin, M.M.-U.-J.; Bekun, F.V. Towards a Clean Production by Exploring the Nexus between Agricultural Ecosystem and Environmental Degradation Using Novel Dynamic ARDL Simulations Approach. Environ. Sci. Pollut. Res. 2022, 29, 53768–53784. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y.; Yuan, J.; He, G. Evaluating the Risks of Nitrogen Fertilizer-Related Grain Production Processes to Ecosystem Health in China. Resour. Conserv. Recycl. 2022, 177, 105982. [Google Scholar] [CrossRef]
- Besen, M.R.; Minato, E.A.; Cassim, B.M.A.R.; Macon, C.R.; de Oliveira Zampar, E.J.; Inoue, T.T.; Batista, M.A. The Efficiency of Stabilized Fertilizers in Reducing Ammonia Loss Is Influenced by Liming Method. Commun. Soil Sci. Plant Anal. 2022, 53, 1552–1564. [Google Scholar] [CrossRef]
- Walling, E.; Vaneeckhaute, C. Greenhouse Gas Emissions from Inorganic and Organic Fertilizer Production and Use: A Review of Emission Factors and Their Variability. J. Environ. Manag. 2020, 276, 111211. [Google Scholar] [CrossRef]
- Vangeli, S.; Posse, G.; Beget, M.E.; Otero Estrada, E.; Valdettaro, R.A.; Oricchio, P.; Kandus, M.; Di Bella, C.M. Effects of Fertilizer Type on Nitrous Oxide Emission and Ammonia Volatilization in Wheat and Maize Crops. Soil Use Manag. 2022, 38, 1519–1531. [Google Scholar] [CrossRef]
- Fan, D.; He, W.; Smith, W.N.; Drury, C.F.; Jiang, R.; Grant, B.B.; Shi, Y.; Song, D.; Chen, Y.; Wang, X.; et al. Global Evaluation of Inhibitor Impacts on Ammonia and Nitrous Oxide Emissions from Agricultural Soils: A Meta-Analysis. Glob. Change Biol. 2022, 28, 5121–5141. [Google Scholar] [CrossRef]
- Fertilizers Europe Types of Fertilizer. Available online: https://www.fertilizerseurope.com/fertilizers-in-europe/types-of-fertilizer/ (accessed on 22 November 2022).
- Sui, Q.; Zhang, J.; Chen, M.; Wang, R.; Wang, Y.; Wei, Y. Fate of Microbial Pollutants and Evolution of Antibiotic Resistance in Three Types of Soil Amended with Swine Slurry. Environ. Pollut. 2019, 245, 353–362. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Zhang, X.; Wang, L.; Xu, X.; Xu, L.; Gong, H.; Xie, H.; Li, F. Data Integration Analysis: Heavy Metal Pollution in China’s Large-Scale Cattle Rearing and Reduction Potential in Manure Utilization. J. Clean. Prod. 2019, 232, 308–317. [Google Scholar] [CrossRef]
- IPCC AR5 Climate Change 2014: Mitigation of Climate Change 2014. Available online: https://www.ipcc.ch/report/ar5/wg3/ (accessed on 29 November 2022).
- IPCC Climate Change 2022: Mitigation of Climate Change. Available online: https://www.ipcc.ch/report/ar6/wg3/ (accessed on 29 November 2022).
- Lemberger, P. Agribalyse 3.0.1—An Update!|OpenLCA.Org. Available online: https://www.openlca.org/agribalyse-3-0-1-update/ (accessed on 29 November 2022).
- Avadí, A.; Aissani, L.; Pradel, M.; Wilfart, A. Life Cycle Inventory Data on French Organic Waste Treatments Yielding Organic Amendments and Fertilisers. Data Brief 2020, 28, 105000. [Google Scholar] [CrossRef]
- Avadí, A. Screening LCA of French Organic Amendments and Fertilisers. Int. J. Life Cycle Assess. 2020, 25, 698–718. [Google Scholar] [CrossRef]
- OpenLCA.Org | OpenLCA Is a Free, Professional Life Cycle Assessment (LCA) and Footprint Software with a Broad Range of Features and Many Available Databases, Created by GreenDelta since 2006. Available online: https://www.openlca.org/ (accessed on 20 November 2022).
- Huijbregts, M.A.; Steinmann, Z.J.; Elshout, P.M.; Stam, G.; Verones, F.; Vieira, M.D.M.; Hollander, A.; Zijp, M.; van Zelm, R. ReCiPe 2016: A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level Report I: Characterization; Rijksinstituut voor Volksgezondheid en Milieu RIVM: Utrecht, The Netherlands, 2016.
- Hsu, D.D. Life Cycle Assessment of Gasoline and Diesel Produced via Fast Pyrolysis and Hydroprocessing. Biomass Bioenergy 2012, 45, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Loyon, L. Overview of Animal Manure Management for Beef, Pig, and Poultry Farms in France. Front. Sustain. Food Syst. 2018, 2, 36. [Google Scholar] [CrossRef] [Green Version]
- Litskas, V.; Mandoulaki, A.; Vogiatzakis, I.N.; Tzortzakis, N.; Stavrinides, M. Sustainable Viticulture: First Determination of the Environmental Footprint of Grapes. Sustainability 2020, 12, 8812. [Google Scholar] [CrossRef]
- Ioannidou, S.C.; Litskas, V.D.; Stavrinides, M.C.; Vogiatzakis, I.N. Linking Management Practices and Soil Properties to Ecosystem Services in Mediterranean Mixed Orchards. Ecosyst. Serv. 2022, 53, 101378. [Google Scholar] [CrossRef]
- Yao, X.; Shah, W.U.H.; Yasmeen, R.; Zhang, Y.; Kamal, M.A.; Khan, A. The Impact of Trade on Energy Efficiency in the Global Value Chain: A Simultaneous Equation Approach. Sci. Total Environ. 2021, 765, 142759. [Google Scholar] [CrossRef]
- Adedoyin, F.F.; Alola, A.A.; Bekun, F.V. The Alternative Energy Utilization and Common Regional Trade Outlook in EU-27: Evidence from Common Correlated Effects. Renew. Sustain. Energy Rev. 2021, 145, 111092. [Google Scholar] [CrossRef]
- Dou, G.; Choi, T.-M. Does Implementing Trade-in and Green Technology Together Benefit the Environment? Eur. J. Oper. Res. 2021, 295, 517–533. [Google Scholar] [CrossRef]
- Lawrencia, D.; Wong, S.K.; Low, D.Y.S.; Goh, B.H.; Goh, J.K.; Ruktanonchai, U.R.; Soottitantawat, A.; Lee, L.H.; Tang, S.Y. Controlled Release Fertilizers: A Review on Coating Materials and Mechanism of Release. Plants 2021, 10, 238. [Google Scholar] [CrossRef]
- Bergstrand, K.-J. Organic Fertilizers in Greenhouse Production Systems—A Review. Sci. Hortic. 2022, 295, 110855. [Google Scholar] [CrossRef]
Fertilizer | NPK | Agribalyse Process—UUID |
---|---|---|
Ammonium Nitrate (AN) | 33.5-0-0 | Ammonium Nitrate, as N (00b72b4a-0121-47f4-b0a6-8994ea3045cb) |
Calcium Ammonium Nitrate (CAN) | 26-0-0 | Calcium Ammonium Nitrate, as N (951a335f-1630-4363-8248-552951786331) |
Urea Ammonium Nitrate (UAN) | 46-0-0 | Urea Ammonium Nitrate, as N (c0e960a7-33bd-457d-9645-0f5baaa9412b) |
Cattle manure (MAN) | 0.77% N w.w. | Manure from cattle, stocked in surface or pit (ccbe7eec-2d09-464c-ab89-2fb771142a6d) |
Organic fertilizer (OF) | 3-2-3 | Organic fertilizer, 3-2-3, granulate, packaged (fef98b5f-e133-4b75-916b-a27990b6f4b1) |
Organo-mineral (OMF) | 5-5-10 | Organo-mineral fertilizer, 5-5-10, granulate, packaged (1178a3f6-cd65-4f27-bc03-f1deb4c437f7) |
Impact Category | AN | CAN | UAN | MAN | OF | OMF |
---|---|---|---|---|---|---|
Particulate matter (g PM2.5 eq) | 1.42 (0.88–2.49) | 4.41 (2.29–8.53) | 3.91 (2.26–6.88) | 11.80 (0.93–20.80) | 19.71 (7.40–31.46) | 22.75 (16.41–29.17) |
Freshwater ecotoxicity (g 1,4-DCB) | 32.01 (17.95–63.93) | 117.56 (57.44–233.47) | 92.99 (49.65–173) | 0.271 (0.269–0.275 | 126.63 (107.83–166.17) | 393.82 (335.26–482.73 |
Freshwater eutrophication (g P eq) | 0.38 (0.20–0.77) | 0.95 (0.46–1.90) | 0.76 (0.40–1.44) | 0.003 (0.001–0.012) | 1.026 (0.795–1.659) | 5.164 (4.273–6.301) |
Human carcinogenic toxicity (g 1,4-DCB) | 39.57 (21.69–79.69) | 99.12 (49.19–195.38) | 78.81 (42.79–145.15) | 1.112 (1.119–1.125) | 111.6 (110.45–111.6) | 386.61 (328.26–478.25) |
Human non-carcinogenic toxicity (g 1,4-DCB) | 1293.77 (725.7–2642.2) | 3453.19 (1720.9–6790) | 2737.64 (1497.1–5019.2) | 8.13 (8.03–8.25) | 5149.3 (3298.1–8778.1) | 12,883 (10,884–16,186) |
Ionizing radiation (Bq Co-60 eq) | 65.41 (32.14–145.92) | 208.62 95.62–423.25) | 150.22 (71.94–303.87) | 0.001 (0.0002–0.03) | 2.29 (2.26–2.29) | 1.71 (1.60–1.86) |
Land use (m2a crop eq) | 0.04 (0.02–0.11) | 0.06 (0.03–0.11) | 0.04 (0.02–0.08) | 0.007 (0.001–0.012) | 6.07 (4.77–8.31) | 3.32 (2.77–4.14) |
Marine ecotoxicity (g 1,4-DCB) | 45.38 (25.87–89.72) | 170.12 (83.35–337.33) | 135.57 (72.45–252.33) | 0.387 (0.383–0.398) | 144.69 (138.33–157.88) | 552.04 (466.7–679.1) |
Marine eutrophication (mg N eq) | 81.16 (45.01–142.87) | 454.27 (219.65–907.02) | 519.56 (276.79–965.38) | 0.0001 (0.0001–0.005) | 0.003 (0.002–0.007) | 0.002 (0.001–0.003) |
Mineral resource scarcity (g Cu eq) | 2.96 (1.76–5.63) | 14.31 (7.06–28.31) | 11.39 (6.07–20.97) | 0.090 0.089–0.091) | 21.08 (15.58–35.18) | 3966.34 (2645.5–6165.4) |
Ozone formation, human health (g NOx eq) | 3.09 (1.92–5.51) | 5.86 (3.27–10.85) | 5.38 (3.29–9.17) | 0.036 (0.028–0.055) | 18.55 (17.58–20.51) | 23.92 (20.74–28.26) |
Ozone formation, terrestrial ecosystems (g NOx eq) | 3.13 (1.95–5.58) | 5.98 (3.34–11.08) | 5.52 (3.38–9.40) | 0.037 (0.029–0.056) | 18.94 (17.97–20.90) | 24.44 (21.21–28.86) |
Stratospheric ozone depletion (mg CFC11 eq) | 11.88 (5.21–24.97) | 26.33 (14.77–44.33) | 26.511 (15.21–49.28) | 48.88 (10.73–111.22) | 211.25 (14.80–404.78) | 84.25 (12.85–154.75) |
Terrestrial acidification (g SO2 eq) | 4.90 (2.97–8.59) | 19.13 (9.58–37.58) | 15.30 (8.55–27.58) | 96.28 (7.51–201.3) | 127.6 (28.11–224.13) | 94.5 (53.87–135.61) |
Terrestrial ecotoxicity (kg 1,4-DCB) | 3.62 (2.69–5.79) | 12.21 (6.87–22.56) | 10.35 (6.19–17.87) | 0.026 (0.025–0.050) | 22.19 (22.03–24.53) | 42.47 (36.06–52.63) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Litskas, V.D. Environmental Impact Assessment for Animal Waste, Organic and Synthetic Fertilizers. Nitrogen 2023, 4, 16-25. https://doi.org/10.3390/nitrogen4010002
Litskas VD. Environmental Impact Assessment for Animal Waste, Organic and Synthetic Fertilizers. Nitrogen. 2023; 4(1):16-25. https://doi.org/10.3390/nitrogen4010002
Chicago/Turabian StyleLitskas, Vassilis D. 2023. "Environmental Impact Assessment for Animal Waste, Organic and Synthetic Fertilizers" Nitrogen 4, no. 1: 16-25. https://doi.org/10.3390/nitrogen4010002
APA StyleLitskas, V. D. (2023). Environmental Impact Assessment for Animal Waste, Organic and Synthetic Fertilizers. Nitrogen, 4(1), 16-25. https://doi.org/10.3390/nitrogen4010002