Combination of Inorganic Nitrogen and Organic Soil Amendment Improves Nitrogen Use Efficiency While Reducing Nitrogen Runoff
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rainfall Simulation Trial
2.2. Nutrient Release Trial
2.3. Statistical Analysis
3. Results
3.1. Nitrogen Release from Organic and Inorganic Sources
3.2. Rainfall Runoff Trial
4. Discussion
4.1. Nitrogen Release from Organic and Inorganic Sources
4.2. Rainfall Runoff Trial
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cassman, K.G.; Dobermann, A. Nitrogen and the Future of Agriculture: 20 Years On. Ambio 2022, 17–24. [Google Scholar] [CrossRef]
- Chen, D.; Suter, H.C.; Islam, A.; Edis, R.; Freney, J.; Walker, C. Prospects of Improving Efficiency of Fertiliser Nitrogen in Australian Agriculture: A Review of Enhanced Efficiency Fertilisers. Aust. J. Soil Res. 2008, 46, 289–301. [Google Scholar] [CrossRef]
- Conant, R.T.; Berdanier, A.B.; Grace, P.R. Patterns and Trends in Nitrogen Use and Nitrogen Recovery Efficiency in World Agriculture. Glob. Biogeochem. Cycles 2013, 27, 558–566. [Google Scholar] [CrossRef]
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Anglade, J.; Garnier, J. 50 Year Trends in Nitrogen Use Efficiency of World Cropping Systems: The Relationship between Yield and Nitrogen Input to Cropland. Environ. Res. Lett. 2014, 9, 105011. [Google Scholar] [CrossRef]
- Thorburn, P.; Biggs, J.; Attard, S.; Kemei, J. Environmental Impacts of Irrigated Sugarcane Production: Nitrogen Lost through Runoff and Leaching. Agric. Ecosyst. Environ. 2011, 144, 1–12. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Adhikari, R.; Casey, P.; Muster, T.; Gill, H.; Adhikari, B. Enhanced Efficiency Fertilisers: A Review of Formulation and Nutrient Release Patterns. J. Sci. Food Agric. 2015, 95, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Webster, A.; Bartley, R.; Armour, J.; Brodie, J.; Thorburn, P. Reducing Dissolved Inorganic Nitrogen in Surface Runoff Water from Sugarcane Production Systems. Mar. Pollut. Bull. 2012, 65, 128–135. [Google Scholar] [CrossRef]
- Zerulla, W.; Barth, T.; Dressel, J.; Erhardt, K.; von Locquenghien, K.H.; Pasda, G.; Rädle, M.; Wissemeier, A. 3, 4-Dimethylpyrazole Phosphate (DMPP)–a New Nitrification Inhibitor for Agriculture and Horticulture. Biol. Fertil. Soils 2001, 34, 79–84. [Google Scholar] [CrossRef]
- Leonard, E. Spread, Delve, Spade, Invert: A Best Practice Guide to the Addition of Clay to Sandy Soils; Grains Research and Development Corporation: Barton, ACT, Australia, 2011; ISBN 1-921779-27-6. [Google Scholar]
- Hamblin, A.; Richards, Q.; Blake, J. Crop Growth across a Toposequence Controlled by Depth of Sand over Clay. Soil Res. 1988, 26, 623–635. [Google Scholar] [CrossRef]
- Wu, Y.; Hasi, E.; Wu, X. Characteristics of Surface Runoff in a Sandy Area in Southern Mu Us Sandy Land. Chin. Sci. Bull. 2012, 57, 270–275. [Google Scholar] [CrossRef] [Green Version]
- Bolan, N.S.; Szogi, A.A.; Chuasavathi, T.; Seshadri, B.; Rothrock, M.J., Jr.; Panneerselvam, P. Uses and Management of Poultry Litter. Worlds Poult. Sci. J. 2010, 66, 673–698. [Google Scholar] [CrossRef] [Green Version]
- Paungfoo-Lonhienne, C.; Visser, J.; Lonhienne, T.G.A.; Schmidt, S. Past, Present and Future of Organic Nutrients. Plant Soil 2012, 359, 1–18. [Google Scholar] [CrossRef]
- Haynes, R.; Naidu, R. Influence of Lime, Fertilizer and Manure Applications on Soil Organic Matter Content and Soil Physical Conditions: A Review. Nutr. Cycl. Agroecosystems 1998, 51, 123–137. [Google Scholar] [CrossRef]
- Chang, E.-H.; Chung, R.-S.; Wang, F.-N. Effect of Different Types of Organic Fertilizers on the Chemical Properties and Enzymatic Activities of an Oxisol under Intensive Cultivation of Vegetables for 4 Years. Soil Sci. Plant Nutr. 2008, 54, 587–599. [Google Scholar] [CrossRef] [Green Version]
- van Zwieten, L. The Long-Term Role of Organic Amendments in Addressing Soil Constraints to Production. Nutr. Cycl. Agroecosystems 2018, 111, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Quilty, J.; Cattle, S. Use and Understanding of Organic Amendments in Australian Agriculture: A Review. Soil Res. 2011, 49, 1–26. [Google Scholar] [CrossRef]
- Angle, J.; Singh, U.; Dimkpa, C.; Heliums, D.; Bindraban, P. Role of Fertilisers for Climate-Resilient Agriculture; International Fertiliser Society: Colchester, UK, 2017; pp. 1–44. [Google Scholar]
- Chen, Y.; Camps-Arbestain, M.; Shen, Q.; Singh, B.; Cayuela, M.L. The Long-Term Role of Organic Amendments in Building Soil Nutrient Fertility: A Meta-Analysis and Review. Nutr. Cycl. Agroecosystems 2018, 111, 103–125. [Google Scholar] [CrossRef]
- Paungfoo-Lonhienne, C.; Redding, M.; Pratt, C.; Wang, W. Plant Growth Promoting Rhizobacteria Increase the Efficiency of Fertilisers While Reducing Nitrogen Loss. J. Environ. Manage. 2019, 233, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.W.; Thomas, J.C.; Duble, R.L. Nitrogen Source Effect on Nitrate and Ammonium Leaching and Runoff Losses from Greens1. Agron. J. 1982, 74, 947–950. [Google Scholar] [CrossRef]
- Salo, T.; Turtola, E. Nitrogen Balance as an Indicator of Nitrogen Leaching in Finland. Agric. Ecosyst. Environ. 2006, 113, 98–107. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, L.; He, Z. Spatial and Temporal Variation of Nitrogen Exported by Runoff from Sandy Agricultural Soils. J. Environ. Sci. 2007, 19, 1086–1092. [Google Scholar] [CrossRef]
- Rayment, G.E.; Lyons, D.J. Soil Chemical Methods—Australasia; CSIRO Publishing: Melbourne, Australia, 2010. [Google Scholar]
- Humphry, J.; Daniel, T.; Edwards, D.; Sharpley, A. A Portable Rainfall Simulator for Plot-Scale Runoff Studies. Appl. Eng. Agric. 2002, 18. [Google Scholar] [CrossRef]
- Redding, M.R. Bentonites and Layered Double Hydroxides Can Decrease Nutrient Losses from Spent Poultry Litter. Appl. Clay Sci. 2011, 52, 20–26. [Google Scholar] [CrossRef]
- Walkowiak, D.K. ISCO Open Channel Flow Measurement Handbook; ISCO: Lincoln, NE, USA, 2006; ISBN 0-9622757-3-5. [Google Scholar]
- Kandeler, E.; Gerber, H. Short-Term Assay of Soil Urease Activity Using Colorimetric Determination of Ammonium. Biol. Fertil. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Schnetger, B.; Lehners, C. Determination of Nitrate plus Nitrite in Small Volume Marine Water Samples Using Vanadium(III)Chloride as a Reduction Agent. Mar. Chem. 2014, 160, 91–98. [Google Scholar] [CrossRef]
- Antille, D.L.; Moody, P.W. Nitrogen Use Efficiency Indicators for the Australian Cotton, Grains, Sugar, Dairy and Horticulture Industries. Environ. Sustain. Indic. 2021, 100099. [Google Scholar] [CrossRef]
- Congreves, K.A.; Otchere, O.; Ferland, D.; Farzadfar, S.; Williams, S.; Arcand, M.M. Nitrogen Use Efficiency Definitions of Today and Tomorrow. Front. Plant Sci. 2021, 12, 912. [Google Scholar] [CrossRef]
- Raun, W.R.; Johnson, G.V. Improving Nitrogen Use Efficiency for Cereal Production. Agron. J. 1999, 91, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Banning, N.C.; Sawada, Y.; Phillips, I.R.; Murphy, D.V. Amendment of Bauxite Residue Sand Can Alleviate Constraints to Plant Establishment and Nutrient Cycling Capacity in a Water-Limited Environment. Ecol. Eng. 2014, 62, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Phillips, I.R.; Courtney, R. Long Term Field Trials Demonstrate Sustainable Nutrient Supply and Uptake in Rehabilitated Bauxite Residue. Sci. Total Environ. 2022, 804, 150134. [Google Scholar] [CrossRef]
- Teutscherova, N.; Houška, J.; Navas, M.; Masaguer, A.; Benito, M.; Vazquez, E. Leaching of Ammonium and Nitrate from Acrisol and Calcisol Amended with Holm Oak Biochar: A Column Study. Geoderma 2018, 323, 136–145. [Google Scholar] [CrossRef]
- Gaskell, M.; Smith, R. Nitrogen Sources for Organic Vegetable Crops. HortTechnology Hortte 2007, 17, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Sumner, M.E. Handbook of Soil Science; CRC Prss: Boca Raton, FL, USA, 1999; ISBN 0-8493-3136-6. [Google Scholar]
- Lide, D.R. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Phillips, I.; Sheehan, K. Importance of Surface Charge Characteristics When Selecting Soils for Wastewater Re-Use. Soil Res. 2005, 43, 915–927. [Google Scholar] [CrossRef]
- Watanabe, Y.; Yamada, H.; Tanaka, J.; Komatsu, Y.; Moriyoshi, Y. Ammonium Ion Exchange of Synthetic Zeolites: The Effect of Their Open-window Sizes, Pore Structures, and Cation Exchange Capacities. Sep. Sci. Technol. 2005, 39, 2091–2104. [Google Scholar] [CrossRef]
- Hinsinger, P. Bioavailability of Soil Inorganic P in the Rhizosphere as Affected by Root-Induced Chemical Changes: A Review. Plant Soil 2001, 237, 173–195. [Google Scholar] [CrossRef]
- Rengel, Z. Availability of Mn, Zn and Fe in the Rhizosphere. J. Soil Sci. Plant Nutr. 2015, 15, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Teste, F.P.; Veneklaas, E.J.; Dixon, K.W.; Lambers, H. Complementary Plant Nutrient-acquisition Strategies Promote Growth of Neighbour Species. Funct. Ecol. 2014, 28, 819–828. [Google Scholar] [CrossRef]
- Touhami, D.; McDowell, R.W.; Condron, L.M. Role of Organic Anions and Phosphatase Enzymes in Phosphorus Acquisition in the Rhizospheres of Legumes and Grasses Grown in a Low Phosphorus Pasture Soil. Plants 2020, 9, 1185. [Google Scholar] [CrossRef]
- Hinsinger, P.; Gilkes, R. Dissolution of Phosphate Rock in the Rhizosphere of Five Plant Species Grown in an Acid, P-Fixing Mineral Substrate. Geoderma 1997, 75, 231–249. [Google Scholar] [CrossRef]
- Foereid, B. Nutrients Recovered from Organic Residues as Fertilizers: Challenges to Management and Research Methods. World J. Agri. Soil Sci. 2019, 1, 1–7. [Google Scholar] [CrossRef]
- Liljeroth, E.; Bååth, E.; Mathiasson, I.; Lundborg, T. Root Exudation and Rhizoplane Bacterial Abundance of Barley (Hordeum Vulgare, L.) in Relation to Nitrogen Fertilization and Root Growth. Plant Soil 1990, 127, 81–89. [Google Scholar] [CrossRef]
- Robinson, D.; Griffiths, B.; Ritz, K.; Wheatley, R. Root-Induced Nitrogen Mineralisation: A Theoretical Analysis. Plant Soil 1989, 117, 185–193. [Google Scholar] [CrossRef]
- Suter, H.; Lam, S.; Walker, C.; Chen, D. Nitrogen Use Efficiency for Pasture Production–Impact of Enhanced Efficiency Fertilisers and N Rate. In Building Productive, Diverse and Sustainable Landscapes, Proceedings of the 17th Australian Agronomy Conference, Hobart, Tasmania, Australia, 21–24 September 2015; Acuña, T., Moeller, C., Parsons, D., Harrison, M., Eds.; Australian Society of Agronomy: Australia, 2015. [Google Scholar]
- Chmelíková, L.; Schmid, H.; Anke, S.; Hülsbergen, K.-J. Nitrogen-Use Efficiency of Organic and Conventional Arable and Dairy Farming Systems in Germany. Nutr. Cycl. Agroecosystems 2021, 119, 337–354. [Google Scholar] [CrossRef]
- Hirel, B.; Tétu, T.; Lea, P.J.; Dubois, F. Improving Nitrogen Use Efficiency in Crops for Sustainable Agriculture. Sustainability 2011, 3, 1452–1485. [Google Scholar] [CrossRef]
- Goyal, S.; Chander, K.; Mundra, M.C.; Kapoor, K.K. Influence of Inorganic Fertilizers and Organic Amendments on Soil Organic Matter and Soil Microbial Properties under Tropical Conditions. Biol. Fertil. Soils 1999, 29, 196–200. [Google Scholar] [CrossRef]
- Kaur, K.; Kapoor, K.K.; Gupta, A.P. Impact of Organic Manures with and without Mineral Fertilizers on Soil Chemical and Biological Properties under Tropical Conditions. J. Plant Nutr. Soil Sci. 2005, 168, 117–122. [Google Scholar] [CrossRef]
- Wen, Z.; Shen, J.; Blackwell, M.; Li, H.; Zhao, B.; Yuan, H. Combined Applications of Nitrogen and Phosphorus Fertilizers with Manure Increase Maize Yield and Nutrient Uptake via Stimulating Root Growth in a Long-Term Experiment. Pedosphere 2016, 26, 62–73. [Google Scholar] [CrossRef]
- Kramer, S.B.; Reganold, J.P.; Glover, J.D.; Bohannan, B.J.M.; Mooney, H.A. Reduced Nitrate Leaching and Enhanced Denitrifier Activity and Efficiency in Organically Fertilized Soils. Proc. Natl. Acad. Sci. USA 2006, 103, 4522–4527. [Google Scholar] [CrossRef] [Green Version]
Parameter | Sand |
---|---|
pH1:5 | 6.15 |
EC1:5 (dS/m) | 0.02 |
Total Carbon (%) | 0.22 |
Total Nitrogen (%) | 0.022 |
Organic Carbon (%) | 0.22 |
NH4-N (mg/kg) | 3 |
NO3-N (mg/kg) | <2 |
Exchangeable Cations (cmol+/kg) | |
Ca | 0.634 |
Mg | 0.373 |
K | 0.114 |
Na | <0.080 |
ECEC | 1.12 |
Particle Size Distribution (%) | |
Coarse Sand | 62.5 |
Fine Sand | 30.2 |
Silt | 6.3 |
Clay | 3.6 |
Texture | coarse sand |
Treatment | (NH4)2SO4 (kg/ha) | CropUp (kg/ha) | (NH4)2SO4 (g/kg Soil) | CropUp (g/kg Soil) |
---|---|---|---|---|
Control | 0 | 0 | 0.000 | 0.000 |
ASLow | 50 | 0 | 0.546 | 0.000 |
CULow | 25 | 25 | 0.273 | 2.593 |
ASMedium | 75 | 0 | 0.819 | 0.000 |
CUMedium | 37.5 | 37.5 | 0.409 | 3.890 |
ASHigh | 100 | 0 | 1.092 | 0.000 |
CUHigh | 50 | 50 | 0.546 | 5.187 |
Treatment | 2M KCl (mg) | Leachate (mg) | Sum (mg) | Min-N (mg) | Increase in (mg) | % Recovery | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NH4 | NOx | NH4 | NOx | NH4 | NOx | NH4 | NOx | Min-N | NH4 | NOx | Min-N | ||
Control | 0.511 | 0.037 | 0.258 | 0.329 | 0.770 | 0.366 | 1.136 | ||||||
CropUpTM | 0.547 | 0.088 | 1.260 | 0.683 | 1.808 | 0.771 | 2.579 | 1.038 ± 0.106 | 0.405 ± 0.145 | 1.443 ± 0.155 | 10.684 | 4.171 | 14.855 |
NH4Cl | 0.574 | 0.049 | 9.641 | 0.577 | 10.215 | 0.626 | 10.841 | 9.446 ± 0.937 | 0.259 ± 0.012 | 9.705 ± 0.939 | 97.220 | 2.672 | 99.892 |
Treatment | TC | TN | Al | B | Ca | Cu | Fe | K | Mg | Mn | Na | P | S | Zn | NUE * |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(g) | (%) | ||||||||||||||
Control | 23565 b | 691 e | 203.5 b | 0.40 c | 189.69 c | 6.04 a | 213.5 b | 208.8 b | 84.1 b | 7.08 b | 35.97 b | 58.61 d | 70.0 f | 78.9 d | - |
ASLow | 26643 b | 1690 d | 236.5 b | 0.39 c | 143.86 cd | 4.23 b | 200.2 b | 313.9 b | 70.7 bc | 6.60 b | 29.63 bc | 74.69 cd | 157.6 e | 206.7 c | 42 |
CULow | 46982 a | 2480 bc | 392.7 a | 0.84 b | 432.60 b | 5.99 a | 374.8 a | 721.2 a | 150.8 a | 13.59 a | 58.50 a | 164.79 b | 225.4 bc | 296.9 b | 75 |
ASMedium | 28696 b | 2112 cd | 236.0 b | 0.40 c | 137.39 cd | 4.31 b | 203.7 b | 418.8 ab | 72.9 bc | 7.04 b | 31.90 bc | 97.35 c | 197.6 cd | 317.6 ab | 40 |
CUMedium | 48472 a | 2805 bc | 438.0 a | 0.85 b | 418.99 b | 6.12 a | 400.6 a | 462.5 ab | 153.6 a | 13.70 a | 60.23 a | 181.34 b | 254.4 b | 325.3 ab | 59 |
ASHigh | 24442 b | 1856 d | 201.6 b | 0.34 c | 119.09 d | 3.42 b | 189.2 b | 426.6 ab | 62.5 c | 6.33 b | 27.04 c | 86.12 cd | 172.1 de | 284.8 b | 24 |
CUHigh | 50864 a | 3477 a | 382.9 a | 1.00 a | 496.22 a | 6.24 a | 376.1 a | 628.1 b | 164.0 a | 15.22 a | 58.72 a | 220.23 a | 317.4 a | 380.4 a | 58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phillips, I.; Paungfoo-Lonhienne, C.; Tahmasbian, I.; Hunter, B.; Smith, B.; Mayer, D.; Redding, M. Combination of Inorganic Nitrogen and Organic Soil Amendment Improves Nitrogen Use Efficiency While Reducing Nitrogen Runoff. Nitrogen 2022, 3, 58-73. https://doi.org/10.3390/nitrogen3010004
Phillips I, Paungfoo-Lonhienne C, Tahmasbian I, Hunter B, Smith B, Mayer D, Redding M. Combination of Inorganic Nitrogen and Organic Soil Amendment Improves Nitrogen Use Efficiency While Reducing Nitrogen Runoff. Nitrogen. 2022; 3(1):58-73. https://doi.org/10.3390/nitrogen3010004
Chicago/Turabian StylePhillips, Ian, Chanyarat Paungfoo-Lonhienne, Iman Tahmasbian, Benjamin Hunter, Brianna Smith, David Mayer, and Matthew Redding. 2022. "Combination of Inorganic Nitrogen and Organic Soil Amendment Improves Nitrogen Use Efficiency While Reducing Nitrogen Runoff" Nitrogen 3, no. 1: 58-73. https://doi.org/10.3390/nitrogen3010004
APA StylePhillips, I., Paungfoo-Lonhienne, C., Tahmasbian, I., Hunter, B., Smith, B., Mayer, D., & Redding, M. (2022). Combination of Inorganic Nitrogen and Organic Soil Amendment Improves Nitrogen Use Efficiency While Reducing Nitrogen Runoff. Nitrogen, 3(1), 58-73. https://doi.org/10.3390/nitrogen3010004