Identifying Sustainable Nitrogen Management Practices for Tea Plantations
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. The Need for Nitrogen
3.1.1. Nitrogen and Crop Yields
3.1.2. Crop Quality
3.1.3. Application Rates and Types of Fertilisers
3.2. Environmental Impacts of Excessive Nitrogen Applications
3.2.1. Soil Health
3.2.2. Water Pollution
3.2.3. Gaseous Emissions
3.3. Alternative Nitrogen Management Strategies
3.3.1. Integrated Nutrient Management
3.3.2. Alternative Fertilisers
3.3.3. Intercropping with Legumes
3.3.4. Nitrification Inhibitors and Control Release Fertilisers
3.3.5. Soil Amendments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaison, C. World Tea Production and Trade: Current and Future Development; Food and Agriculture Organization: Rome, Italy, 2015. [Google Scholar]
- Hilal, Y.; Engelhardt, U. Characterisation of white tea—Comparison to green and black tea. J. Verbrauch. Leb. 2007, 2, 414–421. [Google Scholar] [CrossRef]
- Khan, N.; Mukhtar, H. Tea and health: Studies in humans. Curr. Pharm. Des. 2013, 19, 6141–6147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. FAOSTAT. 2021. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 27 June 2021).
- United Nations. UN Comtrade Database. 2021. Available online: https://comtrade.un.org/data (accessed on 24 June 2021).
- Majumder, A.B.; Bera, B.; Rajan, A. Tea statistics: Global scenario. Int. J. Tea Sci. 2010, 8, 121–124. [Google Scholar]
- Vivek, V.; Steffany, B.; Cristina, L. Global Market Report: Tea. The International Institute for Sustainable Development, Sustainable Commodities Marketplace Series. 2019. Available online: https://www.iisd.org/system/files/publications/ssi-global-market-report-tea.pdf (accessed on 20 June 2021).
- Hajiboland, R. Environmental and nutritional requirements for tea cultivation. Folia Hortic. 2017, 29, 199–220. [Google Scholar] [CrossRef] [Green Version]
- de Costa, W.A.J.M.; Mohotti, A.J.; Wijeratne, M.A. Ecophysiology of tea. Braz. J. Plant Physiol. 2007, 19, 299–332. [Google Scholar] [CrossRef]
- Tabu, I.M.; Kekana, V.M.; Kamau, D.M. Effect of Varying Ratios and Rates of Enriched Cattle Manure on Leaf Nitrogen Content, Yield and Quality of Tea (Camellia sinensis). J. Agric. Sci. 2015, 7, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Sultana, J.; Siddique, J.M.N.; Kamaruzzaman, M.; Halim, M.A. Conventional to ecological: Tea plantation soil management in the Panchagarh District of Bangladesh. J. Sci. Technol. Environ. Inform. 2014, 1, 27–37. [Google Scholar]
- Hirono, Y.; Nonaka, K. Effects of application of lime nitrogen and dicyandiamide on nitrous oxide emissions from green tea fields. Soil Sci. Plant Nutr. 2014, 60, 276–285. [Google Scholar] [CrossRef] [Green Version]
- Roberts, T.L. Improving nutrient use efficiency. Turk. J. Agric. For. 2008, 32, 177–182. [Google Scholar]
- Hirono, Y.; Watanabe, I.; Nonaka, K. Trends in water quality around an intensive tea-growing area in Shizuoka, Japan. Soil Sci. Plant Nutr. 2009, 55, 783–792. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Ii, H.; Hirata, T.; Nishikawa, M.; Umehara, K.; Ogawa, Y. Groundwater metal and nitrogen contaminations caused by nitrogen fertilizer in tea plantation catchment, the center of Shizuoka, Japan. J. Hydrosci. Hydraul. Eng. 2002, 20, 37–47. [Google Scholar]
- Thenmozhi, K.; Manian, S.; Paulsamy, S. Influence of long term nitrogen and potassium fertilization on the biochemistry of tea soil. J. Res. Agric. 2012, 1, 124–135. [Google Scholar]
- Carr, M.K.V. The Climatic Requirements of the Tea Plant: A Review. Exp. Agric. 1972, 8, 1–14. [Google Scholar] [CrossRef]
- Cheruiyot, E.K.; Mumera, L.M.; Ng’etich, W.K.; Hassanali, A.; Wachira, F.N. High fertilizer rates increase susceptibility of tea to water stress. J. Plant Nutr. 2010, 33, 115–129. [Google Scholar] [CrossRef]
- Akiyama, H.; Yan, X.; Yagi, K. Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: Summary of available data. Soil Sci. Plant Nutr. 2006, 52, 774–787. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, Z.; Pan, Z.; Wang, R.; Yan, G.; Liu, C.; Su, Y.; Zheng, X.; Butterbach-Bahl, K. Tea-planted soils as global hotspots for N2O emissions from croplands. Environ. Res. Lett. 2020, 15, 104018. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC; Solomon, S., Qin, D., Manning, M., Eds.; Cambridge University Press: Cambridge, UK, 2007; p. 996. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, F.; Yang, Z.; Huang, H.; Yang, F.; Zhu, L.; Han, D. Nitrogen fertilization in soil affects physiological characteristics and quality of green tea leaves. HortScience 2018, 53, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Onduru, D.D.; de Jager, A.; Hiller, S.; van den Bosch, R. Sustainability of smallholder tea production in developing countries: Learning experiences from farmer field schools in Kenya. Int. J. Dev. Sustain. 2012, 1, 714–742. [Google Scholar]
- Hawkesford, M. Functions of Macronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Owuor, P.O. Fertilizer use in tea: The case of nitrogen. Tea 1997, 18, 132–143. [Google Scholar]
- Venkatesan, S.; Murugesan, S.; Ganapathy, M.N.K.; Verma, D.P. Long-term impact of nitrogen and potassium fertilizers on yield, soil nutrients and biochemical parameters of tea. J. Sci. Food Agric. 2004, 84, 1939–1944. [Google Scholar] [CrossRef]
- Stephens, W.; Carr, M.K.V. Responses of tea (Camellia sinensis) to irrigation and fertilizer. i. yield. Exp. Agric. 1991, 27, 75–85. [Google Scholar] [CrossRef]
- Ma, L.; Yang, X.; Shi, Y.; Yi, X.; Ji, L.; Cheng, Y.; Ni, K.; Ruan, J. Response of tea yield, quality and soil bacterial characteristics to long-term nitrogen fertilization in an eleven-year field experiment. Appl. Soil Ecol. 2021, 166, 103976. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, J.; Yang, Z.; Zou, J. Effects of rainfall and fertilizer types on nitrogen and phosphorus concentrations in surface runoff from subtropical tea fields in Zhejiang, China. Nutr. Cycl. Agroecosystems 2012, 93, 297–307. [Google Scholar] [CrossRef]
- Ji, L.; Wu, Z.; You, Z.; Yi, X.; Ni, K.; Guo, S.; Ruan, J. Effects of organic substitution for synthetic N fertilizer on soil bacterial diversity and community composition: A 10-year field trial in a tea plantation. Agric. Ecosyst. Environ. 2018, 268, 124–132. [Google Scholar] [CrossRef]
- Tokuda, S.-I.; Hayatsu, M. Nitrous oxide flux from a tea field amended with a large amount of nitrogen fertilizer and soil environmental factors controlling the flux. Soil Sci. Plant Nutr. 2004, 50, 365–374. [Google Scholar] [CrossRef]
- Owuor, P.O.; Ng’etich, W.K.; Obanda, M. Quality response of clonal black tea to nitrogen fertilizer, plucking interval and plucking standard. J. Sci. Food Agric. 2000, 80, 439–446. [Google Scholar] [CrossRef]
- Owuor, P.O.; Obanda, M.; Nyirenda, H.E.; Mphangwe, N.I.; Wright, L.P.; Apostolides, Z. The relationship between some chemical parameters and sensory evaluations for plain black tea (Camellia sinensis) produced in Kenya and comparison with similar teas from Malawi and South Africa. Food Chem. 2006, 97, 644–653. [Google Scholar] [CrossRef]
- Yao, L.; Liu, X.; Jiang, Y.; Caffin, N.; D’Arcy, B.; Singanusong, R.; Datta, N.; Xu, Y. Compositional analysis of teas from Australian supermarkets. Food Chem. 2006, 94, 115–122. [Google Scholar] [CrossRef]
- Hara, Y.; Luo, S.J.; Wickremasinghe, R.L.; Yamanishi, T. Special issue on tea. Food Rev. Int. 1995, 11, 371–545. [Google Scholar]
- Ding, Z.; Kuhr, S.; Engelhardt, U.H. Influence of catechins and theaflavins on the astringent taste of black tea brews. Z. Lebensm. Unters. Forsch. 1992, 195, 108–111. [Google Scholar] [CrossRef]
- Ruan, J.; Gerendás, J.; Härdter, R.; Sattelmacher, B. Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Ann. Bot. 2007, 99, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, H.; Zhao, Y.; Xu, R. Soil acidification of alfisols influenced by nitrate and ammonium nitrogen level in tea plantation. Int. J. Agric. Biol. Eng. 2018, 11, 168–172. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, X.; Tang, C.; Muhammad, N.; Wu, J.; Brookes, P.C.; Xu, J. Potential role of biochars in decreasing soil acidification—A critical review. Sci. Total Environ. 2017, 581, 601–611. [Google Scholar] [CrossRef]
- Zhang, Y.; He, X.; Liang, H.; Zhao, J.; Zhang, Y.; Xu, C.; Shi, X. Long-term tobacco plantation induces soil acidification and soil base cation loss. Environ. Sci. Pollut. Res. 2016, 23, 5442–5450. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Modeling global annual N2O and NO emissions from fertilized fields. Glob. Biogeochem. Cycles 2002, 16, 1080. [Google Scholar] [CrossRef]
- Yan, P.; Shen, C.; Fan, L.; Li, X.; Zhang, L.; Zhang, L.; Han, W. Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil. Agric. Ecosyst. Environ. 2018, 254, 20–25. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.; Zhang, J.-B.; Müller, C.; Wang, S.-Q. Mechanistic insights into the effects of N fertilizer application on N2O-emission pathways in acidic soil of a tea plantation. Plant Soil 2015, 389, 45–57. [Google Scholar] [CrossRef]
- Willson, K.C. Studies on the mineral nutrition of tea II—Nitrogen. Plant Soil 1975, 42, 501–516. [Google Scholar] [CrossRef]
- Wang, J.; Tu, X.; Zhang, H.; Cui, J.; Ni, K.; Chen, J.; Cheng, Y.; Zhang, J.; Chang, S.X. Effects of ammonium-based nitrogen addition on soil nitrification and nitrogen gas emissions depend on fertilizer-induced changes in pH in a tea plantation soil. Sci. Total. Environ. 2020, 747, 141340. [Google Scholar] [CrossRef]
- Yang, X.; Ma, L.; Ji, L.; Shi, Y.; Yi, X.; Yang, Q.; Ni, K.; Ruan, J. Long-term nitrogen fertilization indirectly affects soil fungi community structure by changing soil and pruned litter in a subtropical tea (Camellia sinensis L.) plantation in China. Plant Soil 2019, 444, 409–426. [Google Scholar] [CrossRef]
- Li, X.; Hu, C.; Delgado, J.A.; Zhang, Y.; Ouyang, Z. Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north china plain. Agric. Water Manag. 2007, 89, 137–147. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, S.; Ma, S.; Jiang, C.; Wu, S.; Bai, Z.; Zhuang, G.; Zhuang, X. Manipulation of nitrogen leaching from tea field soil using a Trichoderma viride biofertilizer. Environ. Sci. Pollut. Res. 2017, 24, 27833–27842. [Google Scholar] [CrossRef] [PubMed]
- Maghanga, J.K.; Kituyi, J.L.; Kisinyo, P.O.; Ng’Etich, W.K. Impact of nitrogen fertilizer applications on surface water nitrate levels within a Kenyan tea plantation. J. Chem. 2012, 2013, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Xie, Y.; Bi, M.; Wang, X.; Lu, Y.; Fan, Z. Effects of best management practices on nitrogen load reduction in tea fields with different slope gradients using the SWAT model. Appl. Geogr. 2018, 90, 200–213. [Google Scholar] [CrossRef]
- Yang, X.-D.; Ni, K.; Shi, Y.-Z.; Yi, X.-Y.; Zhang, Q.-F.; Fang, L.; Ma, L.-F.; Ruan, J. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agric. Ecosyst. Environ. 2018, 252, 74–82. [Google Scholar] [CrossRef]
- Reay, D.S.; Smith, K.A.; Hewitt, C.N. Methane: Importance, sources and sinks. In Greenhouse Gas Sinks; Reay, D.S., Hewitt, C.N., Smith, K.A., Grace, J., Eds.; CAB International: Oxfordshire, UK, 2007. [Google Scholar]
- International Atomic Energy Agency. Manual on Measurement of Methane and Nitrous Oxide Emissions from Agriculture; International Atomic Energy Agency: Vienna, Austria, 1992. [Google Scholar]
- Yao, Z.; Wei, Y.; Liu, C.; Zheng, X.; Xie, B. Organically fertilized tea plantation stimulates N2O emissions and lowers NO fluxes in subtropical China. Biogeosciences 2015, 12, 5915–5928. [Google Scholar] [CrossRef] [Green Version]
- Hirono, Y.; Nonaka, K. Nitrous oxide emissions from green tea fields in Japan: Contribution of emissions from soil between rows and soil under the canopy of tea plants. Soil Sci. Plant Nutr. 2012, 58, 384–392. [Google Scholar] [CrossRef]
- Guthrie, S.; Dunkerley, F.; Tabaqchali, H.; Harshfield, A.; Ioppolo, B.; Manville, C. Impact of Ammonia Emissions from Agriculture on Biodiversity: An Evidence Synthesis; RAND Corporation: Santa Monica, CA, USA, 2018. [Google Scholar] [CrossRef]
- Stokstad, E. Ammonia Pollution From Farming May Exact Hefty Health Costs. Science 2014, 343, 238. [Google Scholar] [CrossRef]
- Han, Y.; Zhu, T. Health effects of fine particles (PM2.5) in ambient air. Sci. China Life Sci. 2015, 58, 624–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Health Effects of Particulate Matter: Policy implications for countries in eastern Europe, Caucasus and central Asia. J. Korean Med. Assoc. 2013, 50. [Google Scholar]
- Xing, Y.F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, 69–74. [Google Scholar]
- Kloog, I.; Ridgway, B.; Koutrakis, P.; Coull, B.A.; Schwartz, J.D. Long-and short-term exposure to PM2.5 and mortality: Using novel exposure models. Epidemiology 2013, 24, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, T.; Wang, Z.; Zhang, H.; Yang, J.; Zhang, J. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crop. Res. 2013, 154, 226–235. [Google Scholar] [CrossRef]
- Hamid, F.; Yazdanpanah, M.; Baradaran, M.; Khalilimoghadam, B.; Azadi, H. Factors affecting farmers’ behavior in using nitrogen fertilizers: Society vs. farmers’ valuation in southwest Iran. J. Environ. Plan. Manag. 2021, 64, 1886–1908. [Google Scholar] [CrossRef]
- Liu, R.; Kang, Y.; Zhang, C.; Pei, L.; Wan, S.; Jiang, S.; Liu, S.; Ren, Z.; Yang, Y. Chemical fertilizer pollution control using drip fertigation for conservation of water quality in Danjiangkou Reservoir. Nutr. Cycl. Agroecosystems 2014, 98, 295–307. [Google Scholar] [CrossRef]
- Tang, S.; Zheng, N.; Ma, Q.; Zhou, J.; Sun, T.; Zhang, X.; Wu, L. Applying Nutrient Expert system for rational fertilisation to tea (Camellia sinensis) reduces environmental risks and increases economic benefits. J. Clean. Prod. 2021, 305, 127197. [Google Scholar] [CrossRef]
- Singh, R.P. Organic Fertilizers: Types, Production and Environmental Impact. Organic Fertilizers: Types, Production and Environmental Impact; Nova Science Publishers: Hauppauge, NY, USA, 2012. [Google Scholar]
- Wang, H.; Yang, S.-H.; Yang, J.-P.; Lv, Y.-M.; Zhao, X.; Pang, J.-L. Temporal changes in soil bacterial and archaeal communities with different fertilizers in tea orchards. J. Zhejiang Univ. Sci. B 2014, 15, 953–965. [Google Scholar] [CrossRef] [Green Version]
- Gu, S.; Hu, Q.; Cheng, Y.; Bai, L.; Liu, Z.; Xiao, W.; Gong, Z.; Wu, Y.; Feng, K.; Deng, Y.; et al. Application of organic fertilizer improves microbial community diversity and alters microbial network structure in tea (Camellia sinensis) plantation soils. Soil Tillage Res. 2019, 195, 104356. [Google Scholar] [CrossRef]
- Xie, S.; Yang, F.; Feng, H.; Yu, Z.; Liu, C.; Wei, C.; Liang, T. Organic fertilizer reduced carbon and nitrogen in runoff and buffered soil acidification in tea plantations: Evidence in nutrient contents and isotope fractionations. Sci. Total. Environ. 2020, 762, 143059. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Feng, H.; Yang, F.; Zhao, Z.; Hu, X.; Wei, C.; Liang, T.; Li, H.; Geng, Y. Does dual reduction in chemical fertilizer and pesticides improve nutrient loss and tea yield and quality? A pilot study in a green tea garden in Shaoxing, Zhejiang Province, China. Environ. Sci. Pollut. Res. 2019, 26, 2464–2476. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Kang, Y.; Wan, S.; Pei, L. Evaluation of methods of nutrient and water management on tea performance and nutrient loss in the Danjiangkou Reservoir area, China. Arch. Agron. Soil Sci. 2016, 62, 1123–1135. [Google Scholar] [CrossRef]
- Han, Z.; Wang, J.; Xu, P.; Li, Z.; Liu, S.; Zou, J. Differential responses of soil nitrogen-oxide emissions to organic substitution for synthetic fertilizer and biochar amendment in a subtropical tea plantation. GCB Bioenergy 2021, 13, 1260–1274. [Google Scholar] [CrossRef]
- He, T.; Yuan, J.; Luo, J.; Wang, W.; Fan, J.; Liu, D.; Ding, W. Organic fertilizers have divergent effects on soil N2O emissions. Biol. Fertil. Soils 2019, 55, 685–699. [Google Scholar] [CrossRef]
- Debere, N.; Lemessa, F.; Urgessa, K.; Berecha, G. Influence of Combined Application of Inorganic-N and Organic-P Fertilizers on Growth of Young Tea Plant (Camellia sinensis var. assamica) in Humid Growing Area of SW Ethiopia. J. Agron. 2014, 13, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, R.; Dey, U. Biofertilizer, a way towards organic agriculture: A review. Afr. J. Microbiol. Res. 2014, 8, 2332–2343. [Google Scholar]
- Graham, P.H.; Vance, C.P. Legumes: Importance and Constraints to Greater Use. Plant Physiol. 2003, 131, 872–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, Y.; Shen, J.; Zhang, X.; Wen, B.; Ma, Y.; Wang, Y.; Fang, W.; Zhu, X. Effects of soybean–tea intercropping on soil-available nutrients and tea quality. Acta Physiol. Plant. 2019, 41, 140. [Google Scholar] [CrossRef]
- Koenig, R.T.; Cochran, V.L. Decomposition and nitrogen mineralization from legume and non-legume crop residues in a subarctic agricultural soil. Biol. Fertil. Soils 1994, 17, 269–275. [Google Scholar] [CrossRef]
- Yanni, Y.G.; Rizk, R.Y.; Corich, V.; Squartini, A.; Ninke, K.; Philip-Hollingsworth, S.; Orgambide, G.; de Bruijn, F.; Stoltzfus, J.; Buckley, D.; et al. Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 1997, 194, 99–114. [Google Scholar] [CrossRef]
- Noel, T.C.; Sheng, C.; Yost, C.; Pharis, R.P.; Hynes, M.F. Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: Direct growth promotion of canola and lettuce. Can. J. Microbiol. 1996, 42, 279–283. [Google Scholar] [CrossRef]
- Höflich, G.; Wiehe, W.; Hecht-Buchholz, C. Rhizosphere colonization of different crops with growth promoting Pseudomonas and Rhizobium bacteria. Microbiol. Res. 1995, 150, 139–147. [Google Scholar] [CrossRef]
- Biswas, J.; Ladha, J.; Dazzo, F. Rhizobia Inoculation Improves Nutrient Uptake and Growth of Lowland Rice. Soil Sci. Soc. Am. J. 2000, 64, 1644–1650. [Google Scholar] [CrossRef]
- Urquiaga, S.; Cruz, K.H.S.; Boddey, R.M. Contribution of nitrogen fixation to sugar cane: Nitrogen-15 and nitrogen-balance estimates. Soil Sci. Soc. Am. J. 1992, 56, 105–114. [Google Scholar] [CrossRef]
- Trenkel, M.E. Controlled-Release and Stabilized Fertilizers in Agriculture; International Fertilizer Industry Association: Paris, France, 1997. [Google Scholar]
- Qiao, C.; Mia, S.; Wang, Y.; Hou, J.; Xu, B. Assessing the effects of nitrification inhibitor dmpp on acidification and inorganic n leaching loss from tea (Camellia sinensis L.) cultivated soils with increasing urea–n rates. Sustainability 2021, 13, 994. [Google Scholar] [CrossRef]
- Han, W.-Y.; Ma, L.-F.; Shi, Y.-Z.; Ruan, J.-Y.; Kemmitt, S.J. Nitrogen release dynamics and transformation of slow release fertiliser products and their effects on tea yield and quality. J. Sci. Food Agric. 2008, 88, 839–846. [Google Scholar] [CrossRef]
- Du, C.W.; Zhou, J.M.; Shaviv, A. Release characteristics of nutrients from polymer-coated compound controlled release fertilizers. J. Polym. Environ. 2006, 14, 223–230. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Jibril, B.Y. Controlled release of paraffin wax/rosin-coated fertilisers. Ind. Eng. Chem. Res. 2005, 44, 2288–2291. [Google Scholar] [CrossRef]
- Ni, B.; Liu, M.; Lü, S.; Xie, L.; Wang, Y. Multifunctional Slow-Release Organic−Inorganic Compound Fertilizer. J. Agric. Food Chem. 2010, 58, 12373–12378. [Google Scholar] [CrossRef]
- Ni, B.; Liu, M.; Lü, S.; Xie, L.; Wang, Y. Environmentally Friendly Slow-Release Nitrogen Fertilizer. J. Agric. Food Chem. 2011, 59, 10169–10175. [Google Scholar] [CrossRef]
- Raguraj, S.; Wijayathunga, W.M.S.; Gunaratne, G.P.; Amali, R.K.A.; Priyadarshana, G.; Sandaruwan, C.; Karunaratne, V.; Hettiarachchi, L.S.K.; Kottegoda, N. Urea–hydroxyapatite nanohybrid as an efficient nutrient source in Camellia sinensis (L.) Kuntze (tea). J. Plant Nutr. 2020, 43, 2383–2394. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Fu, X.; Shen, J.; Chen, D.; Wang, Y.; Liu, X.; Xiao, R.; Wei, W.; Wu, J. Effect of controlled-release fertilizer on N2O emissions and tea yield from a tea field in subtropical central China. Environ. Sci. Pollut. Res. 2018, 25, 25580–25590. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, P.; Safique, S.; Jahan, A. Humic substrates facilitated nitrogen uptake in tea bushes by influencing biochemical and microbiological properties in soil of Northeast India. J. Plant Nutr. 2018, 41, 2376–2385. [Google Scholar] [CrossRef]
- Yang, W.; Li, C.; Wang, S.; Zhou, B.; Mao, Y.; Rensing, C.; Xing, S. Influence of biochar and biochar-based fertilizer on yield, quality of tea and microbial community in an acid tea orchard soil. Appl. Soil Ecol. 2021, 166, 104005. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Wang, H.; Wang, Z.; Fu, X.; Shen, J.; Wang, Y.; Liu, X.; Meng, L.; Wu, J. Response of N2O emissions to biochar amendment on a tea field soil in subtropical central China: A three-year field experiment. Agric. Ecosyst. Environ. 2021, 318, 107473. [Google Scholar] [CrossRef]
- Oo, A.; Sudo, S.; Win, K.; Shibata, A.; Sano, T.; Hirono, Y. Returning Tea Pruning Residue and Its Biochar Had a Contrasting Effect on Soil N2O and CO2 Emissions from Tea Plantation Soil. Atmosphere 2018, 9, 109. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Liu, Y.; Mo, C.; Jiang, Z.; Yang, J.; Lin, J. Microbial mechanism of biochar addition on nitrogen leaching and retention in tea soils from different plantation ages. Sci. Total. Environ. 2020, 757, 143817. [Google Scholar] [CrossRef]
- Yamamoto, A.; Akiyama, H.; Naokawa, T.; Miyazaki, Y.; Honda, Y.; Sano, Y.; Nakajima, Y.; Yagi, K. Lime-nitrogen application affects nitrification, denitrification, and N2O emission in an acidic tea soil. Biol. Fertil. Soils 2014, 50, 53–62. [Google Scholar] [CrossRef]
Location | Type of Fertiliser | Application Rate (kg N ha−1) | Yield (t ha−1) | Reference |
---|---|---|---|---|
Hangzhou, China | No fertiliser | 0 | 1.25 | Liu et al. (2012) |
Hangzhou, China | Urea and CaH6O9P2 | 548 | 2.97 | Liu et al. (2012) |
Hangzhou, China | Organic | 548 | 2.60 | Liu et al. (2012) |
Hangzhou, China | Slow release | 548 | 2.75 | Liu et al. (2012) |
Hangzhou, China | Urea | 0 | 2.50 | Ma et al. (2021) |
Hangzhou, China | Urea | 119 | 3.00 | Ma et al. (2021) |
Hangzhou, China | Urea | 285 | 3.50 | Ma et al. (2021) |
Hangzhou, China | Urea | 569 | 3.10 | Ma et al. (2021) |
South India | Urea | 0 | 2.12 | Venkatesan et al. (2004) |
South India | Urea | 150 | 2.37 | Venkatesan et al. (2004) |
South India | Urea | 300 | 2.79 | Venkatesan et al. (2004) |
South India | Urea | 450 | 3.11 | Venkatesan et al. (2004) |
Tanzania | NPK | 0 | 1.87 | Stephens and Carr (1991) * |
Tanzania | NPK | 110 | 2.80 | Stephens and Carr (1991) * |
Tanzania | NPK | 170 | 2.91 | Stephens and Carr (1991) * |
Tanzania | NPK | 230 | 3.40 | Stephens and Carr (1991) * |
Tanzania | NPK | 280 | 3.70 | Stephens and Carr (1991) * |
Tanzania | NPK | 350 | 4.50 | Stephens and Carr (1991) * |
Fujian, China | NPK | 0 | 4.20 | Ji et al. (2018) |
Fujian, China | NPK | 300 | 6.46 | Ji et al. (2018) |
Fujian, China | NPK (75%) + organic (25%) | 300 | 6.65 | Ji et al. (2018) |
Fujian, China | NPK (50%) + organic (50%) | 300 | 6.18 | Ji et al. (2018) |
Fujian, China | NPK (25%) + organic (75%) | 300 | 6.23 | Ji et al. (2018) |
Fujian, China | Organic | 300 | 5.36 | Ji et al. (2018) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebello, R.; Burgess, P.J.; Girkin, N.T. Identifying Sustainable Nitrogen Management Practices for Tea Plantations. Nitrogen 2022, 3, 43-57. https://doi.org/10.3390/nitrogen3010003
Rebello R, Burgess PJ, Girkin NT. Identifying Sustainable Nitrogen Management Practices for Tea Plantations. Nitrogen. 2022; 3(1):43-57. https://doi.org/10.3390/nitrogen3010003
Chicago/Turabian StyleRebello, Rhys, Paul J. Burgess, and Nicholas T. Girkin. 2022. "Identifying Sustainable Nitrogen Management Practices for Tea Plantations" Nitrogen 3, no. 1: 43-57. https://doi.org/10.3390/nitrogen3010003
APA StyleRebello, R., Burgess, P. J., & Girkin, N. T. (2022). Identifying Sustainable Nitrogen Management Practices for Tea Plantations. Nitrogen, 3(1), 43-57. https://doi.org/10.3390/nitrogen3010003