How Does N Mineral Fertilizer Influence the Crop Residue N Credit?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Characterization
2.2. Additions of Soil and Residue
2.3. Measurements and Statistical Analysis
3. Results
3.1. Total Soil N
3.2. Remaining Residue Total N
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wendling, B.; Jucksch, I.; De Sá Mendonça, E.; Almeida, R.F.; Alvarenga, R.C. Simulação dos estoques de Carbono e Nitrogênio pelo Modelo Century em Latossolos, no Cerrado Brasileiro. Rev. Cienc. Agron. 2014, 45, 238–248. [Google Scholar] [CrossRef]
- Mikhael, J.E.R.; Almeida, R.F.; de Oliveira Franco, F.; Camargo, R.O.; Wendling, B. Recalcitrant carbon and nitrogen in agriculture soils with residue accumulation and fertilization under tropical conditions. Biosci. J. 2019, 35, 732–740. [Google Scholar] [CrossRef]
- Almeida, R.F.; Mikhael, J.E.R.; Franco, F.O.; Santana, L.M.F.; Wendling, B. Measuring the labile and recalcitrant pools of carbon and nitrogen in forested and agricultural soils: A study under tropical conditions. Forests 2019, 10, 544. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Mazzoncini, M.; Bàrberi, P.; Antichi, D.; Silvestri, N. Fifteen years of no till increase soil organic matter, microbial biomass and arthropod diversity in cover crop-based arable cropping systems. Agron Sustain. Dev. 2012, 32, 853–863. [Google Scholar] [CrossRef]
- Santos, I.L.; Caixeta, C.F.; Sousa, A.A.T.C.; Figueiredo, C.C.; Ramos, M.L.G.; Carvalho, A.M. Cover plants and mineral nitrogen: Effects on organic matter fractions in an oxisol under no-tillage in the cerrado. Rev. Bras. Cienc. Solo. 2014, 38, 1874–1881. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, A.R.; Hill, P.W.; Chadwick, D.R.; Jones, D.L. Crop residues exacerbate the negative effects of extreme flooding on soil quality. Biol. Fertil. Soils 2017, 53, 751–765. [Google Scholar] [CrossRef]
- Kerdraon, L.; Laval, V.; Suffert, F. Microbiomes and pathogen survival in crop residues, an ecotone between plant and soil. Phytobiomes J. 2019, 3, 246–255. [Google Scholar] [CrossRef]
- Stevenson, F.J. Organic Forms of Soil Nitrogen; John Wiley & Sons, Ltd.: Madison, WI, USA, 1982; pp. 67–122. [Google Scholar]
- Bremner, J.M. Organic Nitrogen in Soils. in Agronomy Monographs; Bartholomew, W.V., Clark, F.E., Eds.; John Wiley & Sons Ltd.: Madison, WI, USA, 1965; pp. 93–149. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Hui, Z.; Miao, Y.; Li, S. Soil Organic Nitrogen and Its Contribution to Crop Production. J. Integr. Agric. 2014, 13, 2061–2080. [Google Scholar] [CrossRef]
- Barth, G.; von Tucher, S.; Schmidhalter, U.; Otto, R.; Motavalli, P.; Ferraz-Almeida, R.; Sattolo, T.M.S.; Cantarella, H.; Vitti, G.C. Performance of nitrification inhibitors with different nitrogen fertilizers and soil textures. J. Plant. Nutr. Soil Sci. 2019, 182, 694–700. [Google Scholar] [CrossRef]
- Ghiberto, P.J.; Libardi, P.L.; Trivelin, P.C.O. Nutrient leaching in an Ultisol cultivated with sugarcane. Agr Water Manag. 2015, 148, 141–149. [Google Scholar] [CrossRef]
- Carmo, J.B.D.; Filoso, S.; Zotelli, L.C.; Neto, E.R.D.S.; Pitombo, L.M.; Duarte-Neto, P.J.; Vargas, V.P.; Andrade, C.A.; Gava, G.J.C.; Rossetto, R.; et al. Infield Greenhouse Gas Emissions from Sugarcane Soils in Brazil: Effects from Synthetic and Organic Fertilizer Application and Crop Trash Accumulation. GCB Bioenergy 2012, 5, 267–280. [Google Scholar] [CrossRef]
- Almeida, R.F.; Naves, E.R.; Silveira, C.H.; Wendling, B. Emissão de óxido nitroso em solos com diferentes usos e manejos: Uma revisão. Rev. Agronegocio Meio Ambient. 2015, 8, 441–461. [Google Scholar]
- Gallucci, A.D.; Natera, M.; Moreira, L.A.; Nardi, K.T.; Altarugio, L.M.; De Mira, A.B.; De Almeida, R.F.; Otto, R. Nitrogen-Enriched Vinasse As a Means of Supplying Nitrogen to Sugarcane Fields: Testing the Effectiveness of N Source and Application Rate. Sugar Tech. 2018, 21, 20–28. [Google Scholar] [CrossRef]
- Risely, F.D.A.; Camila, H.S.; Joseph, E.R.M.; Fernando, O.F.; Bruno, T.R.; Ado, D.S.F.; Eduardo, D.S.M.; Beno, W. CO2 Emissions from Soil Incubated With Sugarcane Straw and Nitrogen Fertilizer. Afr. J. Biotechnol. 2014, 13, 3376–3384. [Google Scholar] [CrossRef]
- Ferraz-Almeida, R.; Silveira, C.H.; Mota, R.P.; Moitinho, M.; Arruda, E.M.; Mendonça, E.D.S.; Júnior, N.L.S.; Wendling, B. For How Long Does the Quality and Quantity of Residues in the Soil Affect the Carbon Compartments and CO2-C Emissions? J. Soils Sediments 2016, 16, 2354–2364. [Google Scholar] [CrossRef]
- Bundy, L.G.; Andraski, T.W.; Wolkowski, R.P. Nitrogen Credits in Soybean-Corn Crop Sequences on Three Soils. Agron. J. 1993, 85, 1061–1067. [Google Scholar] [CrossRef]
- Tenelli, S.; Otto, R.; Castro, S.A.D.Q.; Sánchez, C.E.B.; Sattolo, T.M.S.; Kamogawa, M.Y.; Pagliari, P.H.; Carvalho, J.L.N. Legume Nitrogen Credits for Sugarcane Production: Implications for Soil N Availability and Ratoon Yield. Nutr. Cycl. Agroecosystems 2019, 113, 307–322. [Google Scholar] [CrossRef]
- Neto, A.M.C.; Coutinho, E.L.M.; Júnior, V.O.; Corá, J.E.; Silva, A.R.B.; Scatolin, M. Nitrogen fertilization management in no-tillage maize with different winter crops manejo da adubação nitrogenada no milho com diferentes plantas de inverno, sob plantio direto. Biosci. J. 2013, 29, 1981–1988. [Google Scholar]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of Fertilizer Nitrogen in Cereal Production: Retrospects and Prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar]
- Ladha, J.; Tirol-Padre, A.; Reddy, C.K.; Cassman, K.G.; Verma, S.; Powlson, D.S.; Van Kessel, C.; Richter, D.D.B.; Chakraborty, D.; Pathak, H. Global Nitrogen Budgets in Cereals: A 50-Year Assessment for Maize, Rice and Wheat Production Systems. Sci. Rep. 2016, 6, 19355. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. Nitrate leaching in temperate agroecosystems: Sources, factors and mitigating strategies. Nutr Cycl Agroecosys 2002, 64, 237–256. [Google Scholar] [CrossRef]
- Fontoura, S.M.V.; Viero, F.; de Moraes, R.P.; Bayer, C. Nitrogen fertilization of no-tillage winter cereals in the south-central region of Paraná, Brazil. Rev. Bras. Cienc. Solo 2017, 41, e0170009. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Yong, R. The circular economy in China. J. Mater. Cycles Waste Manag. 2007, 9, 121–129. [Google Scholar] [CrossRef]
- EMBRAPA; Empresa Brasileira de Pesquisa Agropecuária. Manual de métodos de análise de solo; EMBRAPA: Brasília, Distrito Federal, Brazil, 1997. [Google Scholar]
- Gee, G.W.; Orr, D. Particle-size analysis. In Methods of Soil Analysis; Dane, J., Topp, G., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 2002; pp. 255–293. [Google Scholar]
- EMBRAPA-Embrapa; Empresa Brasileira de Pesquisa Agropecuária. Sistema Brasileiro de Classificação de Solos; EMBRAPA Solo: Brasília, Distrito Federal, Brazil, 2018. [Google Scholar]
- Soil Survey Staff. Soil Survey | NRCS Soils. 2014. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/ (accessed on 1 July 2020).
- Yeomans, J.C.; Bremner, J.M. A rapid and precise method for routine determination of organic carbon in soil1. Commun. Soil Sci. Plant Anal. 1998, 19, 1467–1476. [Google Scholar] [CrossRef]
- Urquiaga, S.; Boddey, R.M.; Deoliveira, O.C.; Lima, E.; Guimarães, D.H.V. A importância de não queimar a palha na cultura da cana de açúcar. Comunicação técnico, Embrapa; Empresa Brasileira de Pesquisa Agropecuária: EMBRAPA Agrobiologia: Seropédica, Rio de Janeiro, Brazil, 1991; pp. 1–6. [Google Scholar]
- Kurihara, C.H.; Venegas, V.H.A.; Neves, J.C.L.; de Novais, R.F. Acúmulo de matéria seca e nutrientes em soja, como variável do potencial produtivo. Rev. Ceres. 2013, 60, 690–698. [Google Scholar] [CrossRef]
- Nunes, U.R.; Júnior, V.C.A.; Silva, E.D.B.; Santos, N.F.; Costa, H.A.O.; Ferreira, C.A. Produção De Palhada De Plantas De Cobertura E Rendimento Do feijão Em Plantio Direto. Pesquisa Agropecuária Brasileira 2006, 41, 943–948. [Google Scholar] [CrossRef]
- Guo, L.; Nishimura, T.; Imoto, H.; Sun, Z. Applicability of soil column incubation experiments to measure CO2 efflux. Int. Agrophys. 2015, 29, 413–421. [Google Scholar] [CrossRef]
- Torres, J.L.R.; Pereira, M.G.; Andrioli, I.; Polidoro, J.C.; Fabian, A.J. Decomposição e liberação de nitrogênio de resíduos culturms de plantas de cobertura em um solo de cerrado. Rev. Bras. Cienc. Solo 2005, 29, 609–618. [Google Scholar] [CrossRef]
- Maia, C.E.; Cantarutti, R.B. Acumulação de nitrogênio e carbono no solo pela adubação orgânica e mineral contínua na cultura do milho. Rev. Bras. Eng. Agríc. 2004, 8, 39–44. [Google Scholar] [CrossRef]
- Meier, E.A.; Thorburn, P.J. Long term sugarcane crop residue retention offers limited potential to reduce nitrogen fertilizer rates in Australian wet tropical environments. Front. Plant Sci. 2016, 7, 1017. [Google Scholar] [CrossRef] [PubMed]
- Franco, H.C.J.; Otto, R.; Faroni, C.E.; Vitti, A.C.; De Oliveira, E.C.A.; Trivelin, P.C.O. Nitrogen in Sugarcane Derived from Fertilizer under Brazilian Field Conditions. Field Crop. Res. 2011, 121, 29–41. [Google Scholar] [CrossRef]
- Altarugio, L.M.; Savieto, J.; Machado, B.D.; Migliavacca, R.A.; Almeida, R.F.; Zavaschi, E.; Carneiro, L.D.; Vitti, G.C.; Otto, R. Optimal Management Practices for Nitrogen Application in Corn Cultivated During Summer and Fall in the Tropics. Commun. Soil Sci. Plant Anal. 2019, 50, 662–672. [Google Scholar] [CrossRef]
- De Faria, I.K.P.; Vieira, J.L.V.; Tenelli, S.; De Almeida, R.E.M.; Campos, L.J.M.; Da Costa, R.V.; Zavaschi, E.; Ferraz-Almeida, R.; Carneiro, L.D.M.E.S.; Otto, R. Optimal Plant Density and Nitrogen Rates for Improving off-Season Corn Yields in Brazil. Sci. Agricola 2019, 76, 344–352. [Google Scholar] [CrossRef]
- Welldy, G.C.A.T.; Isabel, D.D.S.Q.; Risely, F.A.; Fernanda, P.M.; Joseph, E.R.M.; Elias, N.B.; Teixeira, W.G.; Queiroz, I.D.D.S.; Almeida, R.F.; Martins, F.P.; et al. Hydro-Physical Properties and Organic Carbon of a Yellow Oxysol under Different Uses. Afr. J. Agric. Res. 2016, 11, 2547–2554. [Google Scholar] [CrossRef]
- Everton, M.A.; Risely, F.D.A.; Luis, A.D.S.D.; Antonio, C.D.S.J.; Emmerson, R.D.M.; Leonardo, R.B.; Jessika, L.D.O.S.; Regina, M.Q.L. Soil Porosity and Density in Sugarcane Cultivation under Different Tillage Systems. Afr. J. Agric. Res. 2016, 11, 2689–2696. [Google Scholar] [CrossRef]
- Almeida, R.F.; Sanches, B.C. Disponibilidade de carbono orgânico nos solos do cerrado brasileiro. Sci. Agraria Paranaensis 2014, 13, 259–264. [Google Scholar] [CrossRef]
- Almeida, R.F.; Nave, E.R.; Mota, R.P. Soil quality: Enzymatic activity of soil β-glucosidase. Glob. Sci. Res. J. 2015, 3, 146–150. [Google Scholar]
- Chioderoli, C.A.; de Mello, L.M.; Grigolli, P.J.; Furlani, C.E.; Silva, J.O.; Cesarin, A.L. Physycal properties of soil and yield of soybeans in corn braquiaria consortium. Rev. Bras. Eng. Agríc. 2012, 16, 37–43. [Google Scholar] [CrossRef]
- De Carvalho, M.A.C.; Soratto, R.P.; Athayde, M.L.F.; Arf, O.; De Sá, M.E. Produtividade do milho em sucessão a adubos verdes no sistema de plantio direto e convencional. Pesqui Agropecu Bras. 2004, 39, 47–53. [Google Scholar] [CrossRef]
- Torres, J.L.R.; Pereira, M.G. Production and decomposition residue culture preceding corn and soybeans in the savannah oxisol miner. Comun. Sci. 2014, 5, 419–426. [Google Scholar]
- Uchida, Y.; Akiyama, H. Mitigation of postharvest nitrous oxide emissions from soybean ecosystems: A review. Soil Sci. Plant. Nutr. 2013, 59, 477–487. [Google Scholar] [CrossRef]
- Rahman, M.M. Carbon Dioxide Emission from Soil. Agric. Res. 2013, 2, 132–139. [Google Scholar] [CrossRef]
- Blackmer, A.M. How Much Nitrogen Do Soybeans Leave for Corn? In Proceedings of the 8th Integrated Crop Management Conference, Ames, IA, USA, 20 November 1996. [Google Scholar]
- Blumenthal, M.J.; Quach, V.P.; Searle, P.G.E. Effect of soybean population density on soybean yield, nitrogen accumulation and residual nitrogen. Aust. J. Exp. Agric. 1988, 28, 99–106. [Google Scholar] [CrossRef]
- Fortes, C.; Vitti, A.C.; Otto, R.; Ferreira, D.A.; Franco, H.C.J.; Trivelin, P.C.O. Contribution of Nitrogen from Sugarcane Harvest Residues and Urea for Crop Nutrition. Sci. Agricola 2013, 70, 313–320. [Google Scholar] [CrossRef]
- Wang, W.J.; Baldock, J.A.; Dalal, R.C.; Moody, P.W. Decomposition dynamics of plant materials in relation to nitrogen availability and biochemistry determined by NMR and wet-chemical analysis. Soil Biol. Biochem. 2004, 36, 2045–2058. [Google Scholar] [CrossRef]
- Gunnarsson, S.; Marstorp, H.; Dahlin, A.S.; Witter, E. Influence of non-cellulose structural carbohydrate composition on plant material decomposition in soil. Biol. Fertil. Soils 2008, 45, 27–36. [Google Scholar] [CrossRef]
- Ferreira, D.A.; Franco, H.C.J.; Otto, R.; Vitti, A.C.; Fortes, C.; Faroni, C.E.; Garside, A.L.; Trivelin, P.C.O. Contribution of N from Green Harvest Residues for Sugarcane Nutrition in Brazil. GCB Bioenergy 2015, 8, 859–866. [Google Scholar] [CrossRef]
- Degaspari, I.A.M.; Soares, J.R.; Montezano, Z.F.; Del Grosso, S.J.; Vitti, A.C.; Rossetto, R.; Cantarella, H. Nitrogen Sources and Application Rates Affect Emissions of N2O and NH3 in Sugarcane. Nutr. Cycl. Agroecosystems 2020, 116, 329–344. [Google Scholar] [CrossRef]
- Prasertsak, P.; Freney, J.; Denmead, O.; Saffigna, P.; Prove, B.; Reghenzani, J. Effect of Fertilizer Placement on Nitrogen Loss from Sugarcane in Tropical Queensland. Nutr. Cycl. Agroecosystems 2002, 62, 229–239. [Google Scholar] [CrossRef]
- Otto, R.; Zavaschi, E.; de Souza Netto, G.J.M.; Machado, B.D.A.; de Mira, A.B. Ammonia volatilization from nitrogen fertilizers applied to sugarcane straw. Rev. Cienc. Agron. 2017, 48, 413–418. [Google Scholar] [CrossRef]
- Cantarella, H.; Trivelin, P.C.O.; Contin, T.L.M.; Dias, F.L.F.; Rosseto, R.; Marcelino, R.; Coimbra, R.B.; Quaggio, J.A. Ammonia Volatilisation from Urease Inhibitor-Treated Urea Applied to Sugarcane Trash Blankets. Sci. Agricola 2008, 65, 397–401. [Google Scholar] [CrossRef]
- Costa, M.C.G.; Vitti, G.C.; Cantarella, H. Volatilização de N-NH3 de fontes nitrogenadas em cana-de-açúcar colhida sem despalha a fogo. Rev. Bras. Cienc. Solo 2003, 27, 631–637. [Google Scholar] [CrossRef]
- Pedrosa, A.W.; Favarin, J.L.; de Vasconcelos, A.L.S.; Carvalho, B.V.; Oliveira, F.B.; Neves, G.B. Brachiaria residues fertilized with nitrogen in coffee fertilization. Coffee Sci. 2014, 9, 366–373. [Google Scholar]
Soybean | Sugarcane | Brachiaria | Average | Soybean | Sugarcane | Brachiaria | Average | |
---|---|---|---|---|---|---|---|---|
Total Soil N (g kg−1) | Remaining Residue N (g kg−1) | |||||||
Average | 0.86 | 0.57 | 0.67 | 0.66 | 0.89 | 0.62 | 0.73 | 0.70 |
Median | 0.84 | 0.56 | 0.56 | 0.62 | 0.90 | 0.65 | 0.85 | 0.67 |
SE | 0.20 | 0.13 | 0.16 | 0.08 | 0.10 | 0.08 | 0.10 | 0.05 |
Max | 1.54 | 1.12 | 1.33 | 1.54 | 1.15 | 0.82 | 1.00 | 1.15 |
Min | 0.07 | 0.07 | 0.07 | 0.07 | 0.60 | 0.35 | 0.40 | 0.35 |
Soybean | Sugarcane | Brachiaria | |
---|---|---|---|
Soil N (g kg−1) | |||
R | +1.11 ± 0.2 (+90%) | +0.75 ± 0.2 (+84%) | +0.72 ± 0.2 (+84%) |
R+N | +1.31 ± 0.1 (+91%) | +0.86 ± 0.1 (+86%) | +1.19 ± 0.1 (+90%) |
Initial-N | 0.12 | 0.12 | 0.12 |
Remaining Residue N (g kg−1) | |||
R | −1.69 ± 0.2 (−68%) | −0.86 ± 0.1 (−59%) | −1.11 ± 0.1 (−66%) |
R+N | −1.51 ± 0.1 (−61%) | −0.77 ± 0.1 (−54%) | −0.78 ± 0.1 (−46%) |
Initial-N | 2.49 | 1.44 | 1.68 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferraz-Almeida, R.; da Silva, N.L.; Wendling, B. How Does N Mineral Fertilizer Influence the Crop Residue N Credit? Nitrogen 2020, 1, 99-110. https://doi.org/10.3390/nitrogen1020009
Ferraz-Almeida R, da Silva NL, Wendling B. How Does N Mineral Fertilizer Influence the Crop Residue N Credit? Nitrogen. 2020; 1(2):99-110. https://doi.org/10.3390/nitrogen1020009
Chicago/Turabian StyleFerraz-Almeida, Risely, Natália Lopes da Silva, and Beno Wendling. 2020. "How Does N Mineral Fertilizer Influence the Crop Residue N Credit?" Nitrogen 1, no. 2: 99-110. https://doi.org/10.3390/nitrogen1020009
APA StyleFerraz-Almeida, R., da Silva, N. L., & Wendling, B. (2020). How Does N Mineral Fertilizer Influence the Crop Residue N Credit? Nitrogen, 1(2), 99-110. https://doi.org/10.3390/nitrogen1020009