Flash Flood Risk Classification Using GIS-Based Fractional Order k-Means Clustering Method
Abstract
1. Introduction
2. Study Area
3. Method
3.1. GIS-Based Raster Quantification
3.2. Fractional Order k-Means Clustering
- high-risk area;
- medium-risk area;
- low-risk area.
4. Dataset
5. Results
5.1. GIS-Based Raster Quantification
5.2. Flash Flood Risk Classification
5.3. Model Validation Based on Historical Data
6. Discussion
7. Conclusions
- (1)
- Evidence of effectiveness. Validation against 1643 documented flash flood sites shows that 95% of recorded events fall within the model’s high- and medium-risk zones, with 75% correctly identified as high-risk zones. These results indicate that the unsupervised formulation captures key terrain and hydro-meteorological controls without relying on historical labels.
- (2)
- Practical implications and transferability. Because the workflow operates on commonly available GIS layers and an extreme rainfall indicator, it is computationally efficient and readily transferable to data-scarce mountainous regions. In practice, users need only assemble the input stack, choose k via internal clustering metrics and spatial realism checks, and tune the fractional order to local feature contrasts.
- (3)
- Limitations. The current implementation does not explicitly represent hydraulic infrastructure (dams, levees, engineered drainage), and it uses the recorded 24 h maximum rainfall without incorporating frequency/return-period information. In addition, validation sites are drawn largely from populated valleys, introducing potential reporting bias.
- (4)
- Future directions. Future work will (i) integrate infrastructure layers or routing effects, (ii) add rainfall frequency information, (iii) broaden validation with remote sensing-derived inundation footprints and gauge records, and (iv) explore semi-supervised or hybrid clustering to leverage limited labels while preserving transferability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hapuarachchi, H.; Wang, Q.; Pagano, T. A review of advances in flash flood forecasting. Hydrol. Processes 2011, 25, 2771–2784. [Google Scholar] [CrossRef]
- Montz, B.E.; Gruntfest, E. Flash flood mitigation: Recommendations for research and applications. Glob. Environ. Change Part B Environ. Hazards 2002, 4, 15–22. [Google Scholar] [CrossRef]
- Gao, J.; Shi, H.; Zang, J.; Liu, Y. Mechanism analysis on the mitigation of harbor resonance by periodic undulating topography. Ocean Eng. 2023, 281, 114923. [Google Scholar] [CrossRef]
- Schroeder, A.J.; Gourley, J.J.; Hardy, J.; Henderson, J.J.; Parhi, P.; Rahmani, V.; Reed, K.A.; Schumacher, R.S.; Smith, B.K.; Taraldsen, M.J. The development of a flash flood severity index. J. Hydrol. 2016, 541, 523–532. [Google Scholar] [CrossRef]
- Davis, R.S. Flash flood forecast and detection methods. In Severe Convective Storms; Springer: Berlin/Heidelberg, Germany, 2001; pp. 481–525. [Google Scholar]
- Doswell, C.A., III; Brooks, H.E.; Maddox, R.A. Flash flood forecasting: An ingredients-based methodology. Weather Forecast. 1996, 11, 560–581. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Li, H.; Fan, Y.; Meng, Z.; Liu, D.; Pan, S. Optimization of Water Quantity Allocation in Multi-Source Urban Water Supply Systems Using Graph Theory. Water 2025, 17, 61. [Google Scholar] [CrossRef]
- Gao, J.; Ma, X.; Dong, G.; Chen, H.; Liu, Q.; Zang, J. Investigation on the effects of Bragg reflection on harbor oscillations. Coast. Eng. 2021, 170, 103977. [Google Scholar] [CrossRef]
- Kim, B.S.; Kim, H.S. Evaluation of flash flood severity in K orea using the modified flash flood index (MFFI). J. Flood Risk Manag. 2014, 7, 344–356. [Google Scholar] [CrossRef]
- Ali, K.; Bajracharyar, R.M.; Raut, N. Advances and challenges in flash flood risk assessment: A review. J. Geogr. Nat. Disasters 2017, 7, 2. [Google Scholar] [CrossRef]
- Chen, H.; Huang, S.; Qiu, H.; Xu, Y.P.; Teegavarapu, R.S.; Guo, Y.; Nie, H.; Xie, H.; Xie, J.; Shao, Y.; et al. Assessment of ecological flow in river basins at a global scale: Insights on baseflow dynamics and hydrological health. Ecol. Indic. 2025, 178, 113868. [Google Scholar] [CrossRef]
- Chen, H.; Xu, B.; Qiu, H.; Huang, S.; Teegavarapu, R.S.; Xu, Y.P.; Guo, Y.; Nie, H.; Xie, H. Adaptive assessment of reservoir scheduling to hydro-meteorological comprehensive dry and wet condition evolution in a multi-reservoir region of southeastern China. J. Hydrol. 2025, 648, 132392. [Google Scholar] [CrossRef]
- Meng, Z.; Hu, Y.; Jiang, S.; Zheng, S.; Zhang, J.; Yuan, Z.; Yao, S. Slope Deformation Prediction Combining Particle Swarm Optimization-Based Fractional-Order Grey Model and K-Means Clustering. Fractal Fract. 2025, 9, 210. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Ma, G.; Rezania, M. Characterization of spatially varying soil properties using an innovative constraint seed method. Comput. Geotech. 2025, 183, 107184. [Google Scholar] [CrossRef]
- Gao, J.; Hou, L.; Liu, Y.; Shi, H. Influences of bragg reflection on harbor resonance triggered by irregular wave groups. Ocean Eng. 2024, 305, 117941. [Google Scholar] [CrossRef]
- Gao, J.; Ma, X.; Zang, J.; Dong, G.; Ma, X.; Zhu, Y.; Zhou, L. Numerical investigation of harbor oscillations induced by focused transient wave groups. Coast. Eng. 2020, 158, 103670. [Google Scholar] [CrossRef]
- Barlow, H.B. Unsupervised learning. Neural Comput. 1989, 1, 295–311. [Google Scholar] [CrossRef]
- Abu El-Magd, S.A.; Orabi, H.O.; Ali, S.A.; Parvin, F.; Pham, Q.B. An integrated approach for evaluating the flash flood risk and potential erosion using the hydrologic indices and morpho-tectonic parameters. Environ. Earth Sci. 2021, 80, 694. [Google Scholar] [CrossRef]
- Liu, T.; Yu, H.; Blair, R.H. Stability estimation for unsupervised clustering: A review. Wiley Interdiscip. Rev. Comput. Stat. 2022, 14, e1575. [Google Scholar] [CrossRef] [PubMed]
- Grira, N.; Crucianu, M.; Boujemaa, N. Unsupervised and semi-supervised clustering: A brief survey. In A Review of Machine Learning Techniques for Processing Multimedia Content; 2025; Volume 1, pp. 9–16. Available online: https://deptinfo.cnam.fr/~crucianm/src/BriefSurveyClustering.pdf (accessed on 2 June 2025).
- Omran, M.G.; Engelbrecht, A.P.; Salman, A. An overview of clustering methods. Intell. Data Anal. 2007, 11, 583–605. [Google Scholar] [CrossRef]
- García-Escudero, L.A.; Gordaliza, A.; Matrán, C.; Mayo-Iscar, A. A review of robust clustering methods. Adv. Data Anal. Classif. 2010, 4, 89–109. [Google Scholar] [CrossRef]
- Murtagh, F.; Contreras, P. Algorithms for hierarchical clustering: An overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2012, 2, 86–97. [Google Scholar] [CrossRef]
- Viroli, C.; McLachlan, G.J. Deep Gaussian mixture models. Stat. Comput. 2019, 29, 43–51. [Google Scholar] [CrossRef]
- Kodinariya, T.M.; Makwana, P.R. Review on determining number of Cluster in K-Means Clustering. Int. J. 2013, 1, 90–95. [Google Scholar]
- Sinaga, K.P.; Yang, M.S. Unsupervised K-means clustering algorithm. IEEE Access 2020, 8, 80716–80727. [Google Scholar] [CrossRef]
- Li, J.; Meng, Z.; Zhang, J.; Chen, Y.; Yao, J.; Li, X.; Qin, P.; Liu, X.; Cheng, C. Prediction of Seawater Intrusion Run-Up Distance Based on K-Means Clustering and ANN Model. J. Mar. Sci. Eng. 2025, 13, 377. [Google Scholar] [CrossRef]
- Grubesic, T.H.; Murray, A.T. Detecting hot spots using cluster analysis and GIS. In Proceedings of the Fifth Annual International Crime Mapping Research Conference, Dallas, TX, USA, 1–4 December 2001; Volume 26. [Google Scholar]
- Fan, B. A hybrid spatial data clustering method for site selection: The data driven approach of GIS mining. Expert Syst. Appl. 2009, 36, 3923–3936. [Google Scholar] [CrossRef]
- Hamfelt, A.; Karlsson, M.; Thierfelder, T.; Valkovsky, V. Beyond K-means: Clusters identification for GIS. In Information Fusion and Geographic Information Systems Towards the Digital Ocean; Springer: Berlin/Heidelberg, Germany, 2011; pp. 93–105. [Google Scholar]
- Eghtesadifard, M.; Afkhami, P.; Bazyar, A. An integrated approach to the selection of municipal solid waste landfills through GIS, K-Means and multi-criteria decision analysis. Environ. Res. 2020, 185, 109348. [Google Scholar] [CrossRef]
- Soor, S.; Challa, A.; Danda, S.; Sagar, B.D.; Najman, L. Iterated watersheds, a connected variation in k-means for clustering gis data. IEEE Trans. Emerg. Top. Comput. 2019, 9, 626–636. [Google Scholar] [CrossRef]
- Sinan, M.; Leng, J.; Shah, K.; Abdeljawad, T. Advances in numerical simulation with a clustering method based on K-means algorithm and Adams Bashforth scheme for fractional order laser chaotic system. Alex. Eng. J. 2023, 75, 165–179. [Google Scholar] [CrossRef]
- Xu, D.; Li, Y.; Yuan, Y.H.; Qiang, J.; Zhu, Y. Incomplete Multi-Kernel k-Means Clustering With Fractional-Order Embedding. In Proceedings of the 2024 IEEE International Conference on Big Data (BigData), Washington, DC, USA, 15–18 December 2024; pp. 1144–1150. [Google Scholar]
- Liu, X.; Sun, Y.; Chen, H.; Hong, J.; Chen, C.; Dong, H.; Fang, K. Investigation and Analysis of Torrential Rain and Flooding Caused by Typhoon Lekima in Wenzhou City, Zhejiang Province. In Proceedings of the 2024 IEEE International Conference on Smart Internet of Things (SmartIoT), Shenzhen, China, 14–16 November 2024; pp. 452–456. [Google Scholar]
- Feng, L.; Hong, W. Characteristics of drought and flood in Zhejiang Province, East China: Past and future. Chin. Geogr. Sci. 2007, 17, 257–264. [Google Scholar] [CrossRef]
- Cui, Y.l.; Hu, J.h.; Xu, C.; Zheng, J.; Wei, J.b. A catastrophic natural disaster chain of typhoon-rainstorm-landslide-barrier lake-flooding in Zhejiang Province, China. J. Mt. Sci. 2021, 18, 2108–2119. [Google Scholar] [CrossRef]
- Yuhao, W.; Xiaohui, W.; Xiaoli, G.; Ju, T.; Yan, J.; Wangxing, X. Investigating the characteristics of short-duration heavy rainfall during flood season in Zhejiang Province using the minute rain gauge data. Torrential Rain Disasters 2025, 44, 60–70. [Google Scholar]
- Diakakis, M.; Deligiannakis, G.; Pallikarakis, A.; Skordoulis, M. Factors controlling the spatial distribution of flash flooding in the complex environment of a metropolitan urban area. The case of Athens 2013 flash flood event. Int. J. Disaster Risk Reduct. 2016, 18, 171–180. [Google Scholar] [CrossRef]
- Chen, F.W.; Liu, C.W. Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environ. 2012, 10, 209–222. [Google Scholar] [CrossRef]
- Bartier, P.M.; Keller, C.P. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput. Geosci. 1996, 22, 795–799. [Google Scholar] [CrossRef]
- Kwon, J.S.; Choi, J.H.; Choi, J.S. Two-dimensional object recognition using chamfer distance transform on morphological skeleton. In Proceedings of the Visual Communications and Image Processing’95, Taipei, China, 23–26 May 1995; Volume 2501, pp. 1750–1761. [Google Scholar]
- Ahmed, M.; Seraj, R.; Islam, S.M.S. The k-means algorithm: A comprehensive survey and performance evaluation. Electronics 2020, 9, 1295. [Google Scholar] [CrossRef]
- Zhu, X.; Vondrick, C.; Fowlkes, C.C.; Ramanan, D. Do we need more training data? Int. J. Comput. Vis. 2016, 119, 76–92. [Google Scholar] [CrossRef]
- Pham, D.T.; Dimov, S.S.; Nguyen, C.D. Selection of K in K-means clustering. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2005, 219, 103–119. [Google Scholar] [CrossRef]
Raw Raster | Symbol | Normalized Value |
---|---|---|
Elevation (m) | ||
Slope (°) | ||
Aspect (°) | , | |
24 h max rainfall (mm) | ||
Distance to stream (m) |
Statistic | Low Risk | Medium Risk | High Risk |
---|---|---|---|
DEM Mean | 82.207 | 887.223 | 432.993 |
DEM Std | 119.052 | 587.835 | 183.051 |
Slope Mean | 8.505 | 19.981 | 12.916 |
Slope Std | 24.843 | 20.266 | 50.728 |
Aspect Mean | −195.148 | 179.673 | 177.247 |
Aspect Std | 360.246 | 149.512 | 215.051 |
Precip Mean | 327.832 | 312.102 | 325.617 |
Precip Std | 54.964 | 63.480 | 62.651 |
Distance Mean | −4.254 | −2.125 | −0.683 |
Distance Std | 45.841 | 103.168 | 58.626 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Huang, J.; Zhang, X.; Meng, Z.; Fan, Y.; Wu, X.; Wang, L.; Hu, L.; Zhang, J. Flash Flood Risk Classification Using GIS-Based Fractional Order k-Means Clustering Method. Fractal Fract. 2025, 9, 586. https://doi.org/10.3390/fractalfract9090586
Li H, Huang J, Zhang X, Meng Z, Fan Y, Wu X, Wang L, Hu L, Zhang J. Flash Flood Risk Classification Using GIS-Based Fractional Order k-Means Clustering Method. Fractal and Fractional. 2025; 9(9):586. https://doi.org/10.3390/fractalfract9090586
Chicago/Turabian StyleLi, Hanze, Jie Huang, Xinhai Zhang, Zhenzhu Meng, Yazhou Fan, Xiuguang Wu, Liang Wang, Linlin Hu, and Jinxin Zhang. 2025. "Flash Flood Risk Classification Using GIS-Based Fractional Order k-Means Clustering Method" Fractal and Fractional 9, no. 9: 586. https://doi.org/10.3390/fractalfract9090586
APA StyleLi, H., Huang, J., Zhang, X., Meng, Z., Fan, Y., Wu, X., Wang, L., Hu, L., & Zhang, J. (2025). Flash Flood Risk Classification Using GIS-Based Fractional Order k-Means Clustering Method. Fractal and Fractional, 9(9), 586. https://doi.org/10.3390/fractalfract9090586