Statistical Insights into Spatial Patterns: A Panorama About Lacunarity
Abstract
1. Introduction
- The development of a novel pedagogical introduction to lacunarity supported by analytical examples;
- The provision of new R and Python implementations for lacunarity estimation, addressing existing software gaps and enhancing accessibility;
- An evidence-based mapping (via VOSviewer) of the widespread utility of the lacunarity across diverse disciplines.
2. Part I: Theoretical Aspects
2.1. General Concepts
- At the smallest scale, each window corresponds to a single pixel, . Letting denote the proportion of gap pixels in the matrix, the statistical moments simplify to , , then . This inverse relation reveals that at the pixel scale, lacunarity depends solely on gap density.
- When the window size matches the image dimensions, , the entire matrix becomes a single observation. Then the variance is null, . Consequently, .
2.2. Simple Analytical Examples
- Case 1: (Chessboard pattern)
- Top-left: (2 zeros)
- Top-right: (2 zeros)
- Bottom-left: (2 zeros)
- Bottom-right: (2 zeros)
- Case 2: (Diagonal pattern)
- Top-left: (2 zeros)
- Top-right: (3 zeros)
- Bottom-left: (3 zeros)
- Bottom-right: (2 zeros)
- Measures of lacunarity
- Case 1:
- Case 2:
- Which Case Has Higher Lacunarity?
- Case :
- Case :
2.3. Random Binary Surface
2.4. Sierpinski-like Fractals
3. Part II: Computational Aspects
3.1. Algorithm to Compute the Lacunarity for Images: General Case
- Step 1: The pixel matrix of the original image, composed of elements distributed in the -plane, must be binarized using a suitable threshold according to Equation (13). The choice of threshold generally depends on the characteristics of the image. Nonetheless, there are automated methods for identifying thresholds, e.g., the Otsu method [11].
- Step 2: A square box of size m must slide over the binarized image, from the top right corner to the bottom left corner, advancing one column and one row per scan, while the number of zeros s (lacunar pixels) inside the box is counted.
- Step 3: From the distribution of s values found in the previous step, the lacunarity can be calculated using Equation (2).
3.2. Computational Tools: A Comparison
Name/Type | Availability | Measures Offered | Reference |
---|---|---|---|
MountainsMap® Premium/Software | Paid | Fractal Dimension () | — |
XEI 4.3.0®/Software | Paid | Fractal Dimension () | — |
Gwyddion 2.69/Software | Free | Fractal Dimension () | [26] |
ImageJ 1.54p/Software | Free | Fractal Dimension () | [27] |
Fraclac/Plugin of FIJI-ImageJ2 | Free | Fractal Dimension and Lacunarity ( and ) | [22] |
Multifrac/Plugin of FIJI-ImageJ2 | Free | Fractal Dimension and Lacunarity ( and ) | [23] |
ComsystanJ/Plugin of FIJI-ImageJ2 | Free | Fractal Dimension and Lacunarity (, , and ) | [24] |
Codes/Python and R languages | Free | Lacunarity () | [28] |
4. Part III: Applications
4.1. Time Evolution
4.2. Applications of Lacunarity: An Overview with VOSviewer
4.3. Lacunarity and Fractal Dimension: A Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandelbrot, B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef]
- Mandelbort, B.B. The Fractal Geometry of Nature; W.H. Freeman: San Francisco, CA, USA, 1982. [Google Scholar]
- Allain, C.; Cloitre, M. Characterizing the lacunarity of random and deterministic fractal sets. Phys. Rev. A 1991, 44, 3552–3558. [Google Scholar] [CrossRef] [PubMed]
- Plotnick, R.E.; Gardner, R.H.; Hargrove, W.W.; Prestegaard, K.; Perlmutter, M. Lacunarity analysis: A general technique for the analysis of spatial patterns. Phys. Rev. E 1996, 53, 5461–5468. [Google Scholar] [CrossRef] [PubMed]
- Mandelbrot, B.B. A Fractal’s Lacunarity, and how it can be Tuned and Measured. In Fractals in Biology and Medicine; Springer: Berlin/Heidelberg, Germany, 1994; pp. 8–21. [Google Scholar]
- Vernon-Carter, J.; Lobato-Calleros, C.; Escarela-Perez, R.; Rodriguez, E.; Alvarez-Ramirez, J. A suggested generalization for the lacunarity index. Phys. A Stat. Mech. Its Appl. 2009, 388, 4305–4314. [Google Scholar] [CrossRef]
- Braun, T.; Unni, V.R.; Sujith, R.; Kurths, J.; Marwan, N. Detection of dynamical regime transitions with lacunarity as a multiscale recurrence quantification measure. Nonlinear Dyn. 2021, 104, 3955–3973. [Google Scholar] [CrossRef]
- Mao, X.; Liu, Z.; Liu, J.; Xie, W.; Shang, P.; Shao, Z. Measuring structural changes of recurrence patterns in multifractal and multiscale aspects by generalized recurrence lacunarity. Fractals 2024, 32, 2450017. [Google Scholar] [CrossRef]
- Hentschel, H.G.E.; Procaccia, I. The infinite number of generalized dimensions of fractals and strange attractors. Phys. D Nonlinear Phenom. 1983, 8, 435–444. [Google Scholar] [CrossRef]
- Plotnick, R.E.; Gardner, R.H.; O’Neill, R.V. Lacunarity indices as measures of landscape texture. Landsc. Ecol. 1993, 8, 201–211. [Google Scholar] [CrossRef]
- Pinto, E.P.; Pires, M.A.; Matos, R.S.; Zamora, R.R.; Menezes, R.P.; Araújo, R.S.; de Souza, T.M. Lacunarity exponent and Moran index: A complementary methodology to analyze AFM images and its application to chitosan films. Phys. A 2021, 581, 126192. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. Measures of fractal lacunarity: Minkowski content and alternatives. In Fractal Geometry and Stochastics; Springer: Berlin/Heidelberg, Germany, 1995; pp. 15–42. [Google Scholar]
- Yasar, F.; Akgunlu, F. Fractal dimension and lacunarity analysis of dental radiographs. Dentomaxillofacial Radiol. 2005, 34, 261–267. [Google Scholar] [CrossRef]
- Ramos, G.Q.; da Costa Melo, I.; Matos, R.S.; Pinto, E.P.; Pires, M.A.; Sanches, E.A.; da Fonseca Filho, H.D. SEM-imaging-based mapping of monofractal and multifractal patterns of the Piper krukoffii Yunck leaf surface architecture. Flora 2023, 306, 152355. [Google Scholar] [CrossRef]
- Pendleton, D.; Dathe, A.; Baveye, P. Influence of image resolution and evaluation algorithm on estimates of the lacunarity of porous media. Phys. Rev. E Stat. Nonlinear Soft Matter Physics 2005, 72, 041306. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.; Lana, X.; Burgueño, A.; Serra, C. Lacunarity, predictability and predictive instability of the daily pluviometric regime in the Iberian Peninsula. Nonlinear Process. Geophys. 2007, 14, 109–121. [Google Scholar] [CrossRef]
- Scott, R.; Kadum, H.; Salmaso, G.; Calaf, M.; Cal, R.B. A lacunarity-based index for spatial heterogeneity. Earth Space Sci. 2022, 9, e2021EA002180. [Google Scholar] [CrossRef]
- Pires, M.A.; Pinto, E.P.; da Silva, R.N.; Duarte Queirós, S.M. Parrondo’s effects with aperiodic protocols. Chaos Interdiscip. J. Nonlinear Sci. 2024, 34, 123126. [Google Scholar] [CrossRef]
- Ţălu, Ş.; Abdolghaderi, S.; Pinto, E.P.; Matos, R.S.; Salerno, M. Advanced fractal analysis of nanoscale topography of Ag/DLC composite synthesized by RF-PECVD. Surf. Eng. 2020, 36, 713–719. [Google Scholar] [CrossRef]
- Păcurar, C.M.; Necula, B.R. An analysis of COVID-19 spread based on fractal interpolation and fractal dimension. Chaos Solitons Fractals 2020, 139, 110073. [Google Scholar] [CrossRef]
- Myint, S.W.; Lam, N. A study of lacunarity-based texture analysis approaches to improve urban image classification. Comput. Environ. Urban Syst. 2005, 29, 501–523. [Google Scholar] [CrossRef]
- Karperien, A.; Ahammer, H.; Jelinek, H.F. Quantitating the subtleties of microglial morphology with fractal analysis. Front. Cell. Neurosci. 2013, 7, 3. [Google Scholar] [CrossRef]
- Torre, I.G.; Heck, R.J.; Tarquis, A. MULTIFRAC: An ImageJ plugin for multiscale characterization of 2D and 3D stack images. SoftwareX 2020, 12, 100574. [Google Scholar] [CrossRef]
- Ahammer, H.; Reiss, M.A.; Hackhofer, M.; Andronache, I.; Radulovic, M.; Labra-Spröhnle, F.; Jelinek, H.F. ComsystanJ: A collection of Fiji/ImageJ2 plugins for nonlinear and complexity analysis in 1D, 2D and 3D. PLoS ONE 2023, 18, e0292217. [Google Scholar] [CrossRef]
- Horcas, I.; Fernández, R.; Gomez-Rodriguez, J.; Colchero, J.; Gómez-Herrero, J.; Baro, A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instruments 2007, 78, 13705. [Google Scholar] [CrossRef] [PubMed]
- Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Open Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Collins, T.J. ImageJ for microscopy. Biotechniques 2007, 43, S25–S30. [Google Scholar] [CrossRef] [PubMed]
- A Practical Complement to the Paper “Statistical Insights into Spatial Patterns: A Panorama About Lacunarity”. Source Code. 2025. Available online: https://github.com/PiresMA/lacunarity_python_and_R (accessed on 24 August 2025).
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Analysis of Areas Employing Fractal Dimension and Lacunarity to the Paper “Statistical Insights into Spatial Patterns: A Panorama About Lacunarity”. Source Code. 2025. Available online: https://github.com/nascimento-fisica/review_fd_fl (accessed on 24 August 2025).
- Monjo, R.; Meseguer-Ruiz, O. Fractal geometry in precipitation. Atmosphere 2024, 15, 135. [Google Scholar] [CrossRef]
- Zhou, W.; Cao, Y.; Zhao, H.; Li, Z.; Feng, P.; Feng, F. Fractal analysis on surface topography of thin films: A review. Fractal Fract. 2022, 6, 135. [Google Scholar] [CrossRef]
- Patiño-Ortiz, M.; Patiño-Ortiz, J.; Martínez-Cruz, M.Á.; Esquivel-Patiño, F.R.; Balankin, A.S. Morphological Features of Mathematical and Real-World Fractals: A Survey. Fractal Fract. 2024, 8, 440. [Google Scholar] [CrossRef]
- Díaz Beltrán, L.; Madan, C.R.; Finke, C.; Krohn, S.; Di Ieva, A.; Esteban, F.J. Fractal dimension analysis in neurological disorders: An overview. In The Fractal Geometry of the Brain; Springer: Berlin/Heidelberg, Germany, 2024; pp. 313–328. [Google Scholar]
- Datseris, G.; Kottlarz, I.; Braun, A.P.; Parlitz, U. Estimating fractal dimensions: A comparative review and open source implementations. Chaos Interdiscip. J. Nonlinear Sci. 2023, 33, 102101. [Google Scholar] [CrossRef]
- Mishra, S.; Kumar, M.; Mishra, L.; Mohanty, R.; Nayak, R.; Das, A.C.; Mishra, S.; Panda, S.; Lapinska, B. Fractal dimension as a tool for assessment of dental implant stability—a scoping review. J. Clin. Med. 2022, 11, 4051. [Google Scholar] [CrossRef]
- Lennon, F.E.; Cianci, G.C.; Cipriani, N.A.; Hensing, T.A.; Zhang, H.J.; Chen, C.T.; Murgu, S.D.; Vokes, E.E.; Vannier, M.W.; Salgia, R. Lung cancer—a fractal viewpoint. Nat. Rev. Clin. Oncol. 2015, 12, 664–675. [Google Scholar] [CrossRef]
- Shariff, A.A.; Hafezi, M.H. A review on fractals and fracture, Part I: Calculating fractal dimensions by CAD model. Appl. Mech. Mater. 2012, 148, 818–821. [Google Scholar] [CrossRef]
- Lopes, R.; Betrouni, N.; Dubois, P. Fractal, multifractal and lacunarity measurement in image texture analysis: A short review. In Computational Vision and Medical Image Processing: VipIMAGE 2009; Springer: Berlin/Heidelberg, Germany, 2009; p. 433. [Google Scholar]
- Sun, W.; Xu, G.; Gong, P.; Liang, S. Fractal analysis of remotely sensed images: A review of methods and applications. Int. J. Remote Sens. 2006, 27, 4963–4990. [Google Scholar] [CrossRef]
- Smith, T., Jr.; Lange, G.; Marks, W.B. Fractal methods and results in cellular morphology—dimensions, lacunarity and multifractals. J. Neurosci. Methods 1996, 69, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Lana, X.; Martínez, M.; Serra, C.; Burgueño, A. Complex behaviour and predictability of the European dry spell regimes. Nonlinear Process. Geophys. 2010, 17, 499–512. [Google Scholar] [CrossRef]
- De Lucena, L.R.R.; Júnior, S.F.A.X.; Stosic, T.; Stosic, B. Lacunarity analysis of daily rainfall data in Pernambuco, Brazil. Acta Scientiarum. Technol. 2018, 40, 36655. [Google Scholar] [CrossRef]
- Agbazo, N.M.; Tall, M.; Sylla, M.B. Nonlinear Trend and Multiscale Variability of Dry Spells in Senegal (1951–2010). Atmosphere 2023, 14, 1359. [Google Scholar] [CrossRef]
- Xia, Y.; Cai, J.; Perfect, E.; Wei, W.; Zhang, Q.; Meng, Q. Fractal dimension, lacunarity and succolarity analyses on CT images of reservoir rocks for permeability prediction. J. Hydrol. 2019, 579, 124198. [Google Scholar] [CrossRef]
- Fu, H.; Wang, S.; Tan, D.; He, G.; Lian, M.; Zhu, Z.; Ding, D. Characterization of evolution of reactive transport parameters during leaching process of sandstone uranium ore by combining porosity and lacunarity. Nucl. Eng. Technol. 2025, 57, 103126. [Google Scholar] [CrossRef]
- Pires, L.F.; Oliveira, J.A.d.; Gaspareto, J.V.; Posadas, A.N.; Lourenço, A.L. Impact of Wetting-Drying Cycles on Soil Intra-Aggregate Pore Architecture Under Different Management Systems. AgriEngineering 2024, 7, 9. [Google Scholar] [CrossRef]
- Oliveira, J.A.d.; Pessoa, T.N.; Gaspareto, J.V.; Posadas, A.N.; Lourenço, A.L.; Libardi, P.L.; Pires, L.F. Characterization of the Pore Network of a Cohesive Oxisol Through Morphological and Pore Complexity Analyses. Agriculture 2025, 15, 200. [Google Scholar] [CrossRef]
- Mohammed, M.M.; Sharma, S.K.; Magzoub, M.; Kumar, R.; Sharma, A.K.; Mahgoub, H.S.; Gouni, A.A.; Bakery, A.A. Wijsman asymptotically ideal statistical sequences of order (α, β) under decision making. J. Math. Comput. Sci. 2025, 38, 330–340. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, E.P.; Pires, M.A.; Antunes, T.B.F.; da Silva, R.N.; Queirós, S.M.D. Statistical Insights into Spatial Patterns: A Panorama About Lacunarity. Fractal Fract. 2025, 9, 570. https://doi.org/10.3390/fractalfract9090570
Pinto EP, Pires MA, Antunes TBF, da Silva RN, Queirós SMD. Statistical Insights into Spatial Patterns: A Panorama About Lacunarity. Fractal and Fractional. 2025; 9(9):570. https://doi.org/10.3390/fractalfract9090570
Chicago/Turabian StylePinto, Erveton P., Marcelo A. Pires, Thiago B. F. Antunes, Rone N. da Silva, and Sílvio M. Duarte Queirós. 2025. "Statistical Insights into Spatial Patterns: A Panorama About Lacunarity" Fractal and Fractional 9, no. 9: 570. https://doi.org/10.3390/fractalfract9090570
APA StylePinto, E. P., Pires, M. A., Antunes, T. B. F., da Silva, R. N., & Queirós, S. M. D. (2025). Statistical Insights into Spatial Patterns: A Panorama About Lacunarity. Fractal and Fractional, 9(9), 570. https://doi.org/10.3390/fractalfract9090570