Dynamic Analysis and FPGA Implementation of a Fractional-Order Memristive Hopfield Neural Network with Hidden Chaotic Dual-Wing Attractors
Abstract
1. Introduction
- 1.
- A fractional-order memristive neural network with dual-wing attractors is proposed, where the attractor morphology, modulated by internal parameters, can exhibit single-wing or dual-wing states, and such attractors are identified as rare hidden attractors.
- 2.
- Bifurcation diagrams, Lyapunov exponent spectra, and basins of attraction are employed to reveal the influence of fractional-order and memristive coupling strength on the neural network, uncovering significant coexisting attractor behaviors.
- 3.
- The MDW-FOMHNN is analyzed using the Adomian decomposition method, and a feasible FPGA implementation scheme is proposed, with results output to an oscilloscope accurately displaying the attractors.
- 4.
- A simple and effective encryption/decryption algorithm based on the MDW-FOMHNN is proposed, demonstrating its strong encryption capability and robustness against noise.
2. Modeling and Equilibrium Analysis of the MDW-FOMHNN
2.1. Fractional-Order Memristor Model
2.2. MDW-FOMHNN Model
2.3. Equilibrium Analysis
3. Numerical Solution and Hidden Dynamics Analysis
3.1. Numerical Solution via the ADM
3.2. Hidden Dynamics
3.2.1. Influence of Fractional Order q and Coupling Strength k on Dynamics
3.2.2. Coexisting Attractors
4. FPGA Hardware Implementation
5. Randomness and Image Encryption Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, J.; Li, W.; Sun, J.; Xiao, R.; Liao, B. Secure and Real-Time Traceable Data Sharing in Cloud-Assisted IoT. IEEE Internet Things J. 2024, 11, 6521–6536. [Google Scholar] [CrossRef]
- Golec, M.; Hatay, E.S.; Golec, M.; Uyar, M.; Golec, M.; Gill, S.S. Quantum cloud computing: Trends and challenges. J. Econ. Technol. 2024, 2, 190–199. [Google Scholar] [CrossRef]
- Zhou, S.; Yuan, B.; Xu, K.; Zhang, M.; Zheng, W. The impact of pricing schemes on cloud computing and distributed systems. J. Knowl. Learn. Sci. Technol. 2024, 3, 193–205. [Google Scholar] [CrossRef]
- Adewusi, A.O.; Okoli, U.I.; Adaga, E.; Olorunsogo, T.; Asuzu, O.F.; Daraojimba, D.O. Business intelligence in the era of big data: A review of analytical tools and competitive advantage. Comput. Sci. Res. J. 2024, 5, 415–431. [Google Scholar]
- Ahmadi, S. A comprehensive study on integration of big data and AI in financial industry and its effect on present and future opportunities. Int. J. Curr. Sci. Res. Rev. 2024, 7, 66–74. [Google Scholar] [CrossRef]
- Dai, Z.; Guo, X. Investigation of E-Commerce Security and Data Platform Based on the Era of Big Data of the Internet of Things. Mob. Inf. Syst. 2022, 2022, 3023298. [Google Scholar] [CrossRef]
- Hu, J.; Zhi, R.; Wang, J. ARS: Adaptive Routing System for Heterogeneous Traffic in Industrial Data Centers. IEEE Trans. Ind. Inform. 2025, 21, 6495–6504. [Google Scholar] [CrossRef]
- Hu, J.; Huang, J.; Li, Z.; Li, Y.; Rao, S.; Jiang, W.; Chen, K.; Wang, J.; He, T. Proactive Transport with High Link Utilization Using Opportunistic Packets in Cloud Data Centers. IEEE Trans. Mob. Comput. 2025, 1–16. [Google Scholar] [CrossRef]
- Hu, J.; Rao, S.; Zhu, M.; Huang, J.; Wang, J.; Wang, J. SRCC: Sub-RTT Congestion Control for Lossless Datacenter Networks. IEEE Trans. Ind. Inform. 2025, 21, 2799–2808. [Google Scholar] [CrossRef]
- Bayoudh, K. A survey of multimodal hybrid deep learning for computer vision: Architectures, applications, trends, and challenges. Inf. Fusion 2024, 105, 102217. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, X. A deep learning-based approach for emotional analysis of sports dance. PeerJ Computer Science 2023, 9, e1441. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; Qin, Y.; Xiao, Z.; Wang, J. MGNet: RGBT tracking via cross-modality cross-region mutual guidance. Neural Netw. 2025, 190, 107707. [Google Scholar] [CrossRef]
- Hua, C.; Cao, X.; Liao, B. Real-Time Solutions for Dynamic Complex Matrix Inversion and Chaotic Control Using ODE-Based Neural Computing Methods. Comput. Intell. 2025, 41, e70042. [Google Scholar] [CrossRef]
- Xiang, Q.; Gong, H.; Hua, C. A new discrete-time denoising complex neurodynamics applied to dynamic complex generalized inverse matrices. J. Supercomput. 2024, 81, 159. [Google Scholar] [CrossRef]
- Zhang, Z.; He, Y.; Mai, W.; Luo, Y.; Li, X.; Cheng, Y.; Huang, X.; Lin, R. Convolutional Dynamically Convergent Differential Neural Network for Brain Signal Classification. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 8166–8177. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, C.; Sun, Y.; Cong, X.; Lin, H.; Deng, Z. Memristor-Based Brain Emotional Learning Neural Network With Attention Mechanism and its Application. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2025, 1. [Google Scholar] [CrossRef]
- Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558. [Google Scholar] [CrossRef]
- Bao, B.; Tang, H.; Bao, H.; Hua, Z.; Xu, Q.; Chen, M. Simplified Discrete Two-Neuron Hopfield Neural Network and FPGA Implementation. IEEE Trans. Ind. Electron. 2025, 72, 4105–4115. [Google Scholar] [CrossRef]
- Bao, H.; Xi, M.; Tang, H.; Zhang, X.; Xu, Q.; Bao, B. Discrete Two-Heterogeneous-Neuron HNN and Chaos-Based Hardware Poisson Encoder. IEEE Trans. Ind. Inform. 2025, 21, 1862–1871. [Google Scholar] [CrossRef]
- Jin, J.; Wu, M.; Ouyang, A.; Li, K.; Chen, C. A Novel Dynamic Hill Cipher and Its Applications on Medical IoT. IEEE Internet Things J. 2025, 12, 14297–14308. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, C.; Yang, G.; Luo, D. Discrete Memristive Delay Feedback Rulkov Neuron Model: Chaotic Dynamics, Hardware Implementation, and Application in Secure Communication. IEEE Internet Things J. 2025, 12, 25559–25567. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, Z.; Iu, H.H.C.; Ding, S.; Mou, J.; Erkan, U.; Toktas, A.; Li, Q.; Wang, C.; Cao, Y. A Parallel Color Image Encryption Algorithm Based on a 2-D Logistic-Rulkov Neuron Map. IEEE Internet Things J. 2025, 12, 18115–18124. [Google Scholar] [CrossRef]
- Zhu, J.; Jin, J.; Chen, C.; Wu, L.; Lu, M.; Ouyang, A. A New-Type Zeroing Neural Network Model and Its Application in Dynamic Cryptography. IEEE Trans. Emerg. Top. Comput. Intell. 2025, 9, 176–191. [Google Scholar] [CrossRef]
- Yu, F.; Tan, B.; He, T.; He, S.; Huang, Y.; Cai, S.; Lin, H. A wide-range adjustable conservative memristive hyperchaotic system with transient quasi-periodic characteristics and encryption application. Mathematics 2025, 13, 726. [Google Scholar] [CrossRef]
- Gao, S.; Iu, H.H.C.; Erkan, U.; Simsek, C.; Toktas, A.; Cao, Y.; Wu, R.; Mou, J.; Li, Q.; Wang, C. A 3D Memristive Cubic Map with Dual Discrete Memristors: Design, Implementation, and Application in Image Encryption. IEEE Trans. Circuits Syst. Video Technol. 2025, 1. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, K.; Feng, C.; Fan, W.; Wang, N. Dynamical effects of low-frequency and high-frequency current stimuli in a memristive Morris–Lecar neuron model. Chaos Solitons Fractals 2024, 189, 115646. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef]
- Yao, W.; Gao, K.; Wang, Y.; Lin, H.; Wu, H.; Xu, C.; Zhang, X. Generalization and differentiation of affective associative memory circuit based on memristive neural network with emotion transfer. Neural Netw. 2025, 188, 107502. [Google Scholar] [CrossRef]
- Yu, F.; He, S.; Yao, W.; Cai, S.; Xu, Q. Bursting Firings in Memristive Hopfield Neural Network with Image Encryption and Hardware Implementation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2025, 1. [Google Scholar] [CrossRef]
- Ding, X.; Feng, C.; Wang, N.; Wu, H.; Xu, Q. Firing activities induced by various stimuli in a memristive ion channel-based bionic circuit. Chaos Solitons Fractals 2025, 199, 116587. [Google Scholar] [CrossRef]
- Bao, H.; Chen, Z.; Ma, J.; Xu, Q.; Bao, B. Planar Homogeneous Coexisting Hyperchaos in Bi-Memristor Cyclic Hopfield Neural Network. IEEE Trans. Ind. Electron. 2024, 71, 16398–16408. [Google Scholar] [CrossRef]
- Yu, F.; He, D.S.S.; Wu, Y.; Zhang, S.; Yin, H. Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection. Chin. Phys. B 2025, 34, 050502. [Google Scholar] [CrossRef]
- Zhang, S.; Peng, X.; Wang, X.; Chen, C.; Zeng, Z. A Novel Memristive Multiscroll Multistable Neural Network With Application to Secure Medical Image Communication. IEEE Trans. Circuits Syst. Video Technol. 2025, 35, 1774–1786. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, C.; Zhang, Y.; Cai, J.; Wang, X.; Zeng, Z. Multidirectional Multidouble-Scroll Hopfield Neural Network With Application to Image Encryption. IEEE Trans. Syst. Man Cybern. Syst. 2025, 55, 735–746. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Lu, D.; Li, C. A novel memristive synapse-coupled ring neural network with countless attractors and its application. Chaos Solitons Fractals 2024, 184, 115056. [Google Scholar] [CrossRef]
- Chen, C.; Min, F.; Cai, J.; Bao, H. Memristor Synapse-Driven Simplified Hopfield Neural Network: Hidden Dynamics, Attractor Control, and Circuit Implementation. IEEE Trans. Circuits Syst. I Regul. Pap. 2024, 71, 2308–2319. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Wang, X.; Zeng, Z. Initial Offset-Boosted Coexisting Hidden Chaos and Firing Multistability in Memristive Ring Neural Network With Hardware Implementation. IEEE Trans. Ind. Electron. 2025, 72, 2024–2033. [Google Scholar] [CrossRef]
- Wan, Z.; Pu, Y.F.; Lai, Q. Multiscroll hidden attractor in memristive autapse neuron model and its memristor-based scroll control and application in image encryption. Neural Netw. 2025, 188, 107473. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Li, M.; Li, Z.; Ma, M.; Wang, M.; He, S. What is the impact of discrete memristor on the performance of neural network: A research on discrete memristor-based BP neural network. Neural Netw. 2025, 185, 107213. [Google Scholar] [CrossRef]
- Xiao, P.; Fang, J.; Wei, Z.; Dong, Y.; Du, S.; Wen, S.; Hong, Q. A Riccati Matrix Equation Solver Design Based Neurodynamics Method and Its Application. IEEE Trans. Autom. Sci. Eng. 2025, 22, 15163–15176. [Google Scholar] [CrossRef]
- Hong, Q.; Jiang, H.; Xiao, P.; Du, S.; Li, T. A Parallel Computing Scheme Utilizing Memristor Crossbars for Fast Corner Detection and Rotation Invariance in the ORB Algorithm. IEEE Trans. Comput. 2025, 74, 996–1010. [Google Scholar] [CrossRef]
- Lin, H.; Deng, X.; Yu, F.; Sun, Y. Diversified Butterfly Attractors of Memristive HNN With Two Memristive Systems and Application in IoMT for Privacy Protection. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2025, 44, 304–316. [Google Scholar] [CrossRef]
- Lai, Q.; Xu, Y.; Fortuna, L. Generating Simple Cyclic Memristive Neural Network Circuit With Controllable Multiscroll Attractors and Multivariable Amplitude Control. IEEE Trans. Neural Netw. Learn. Syst. 2025, 1–10. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, C.; Yang, G. Chaotic Dynamics of Memristor-Coupled Tabu Learning Neuronal Network. Int. J. Bifurc. Chaos 2025, 35, 2550053. [Google Scholar] [CrossRef]
- Lai, Q.; Chen, Y. Multi-scroll attractor and its broken coexisting attractors in cyclic memristive neural network. Chaos Interdiscip. J. Nonlinear Sci. 2023, 33, 083149. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Wang, R.; Tang, H.; Chen, M.; Bao, B. Discrete Memristive Hopfield Neural Network With Multi-Stripe/Wave Hyperchaos. IEEE Internet Things J. 2025, 12, 20902–20912. [Google Scholar] [CrossRef]
- Yu, F.; Wu, C.; Xu, S.; Yao, W.; Xu, C.; Cai, S.; Wang, C. Color video encryption transmission in IoT based on memristive hopfield neural network. Signal Image Video Process. 2025, 19, 77. [Google Scholar] [CrossRef]
- Zhang, S.; He, D.; Li, Y.; Lu, D.; Li, C. Dual Memristor-Coupled Hopfield Neural Network With Any Multi-Scroll Amplitude Control and Its Application for Medical Image Classification. IEEE Trans. Autom. Sci. Eng. 2025, 22, 17828–17840. [Google Scholar] [CrossRef]
- Wan, Q.; Chen, C.; Liu, T.; Rao, H.; Dong, J. High-dimensional memristor-coupled multiple neural networks with spatial multi-structure attractors and application in image encryption. Chaos Solitons Fractals 2025, 199, 116716. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, C.; Sun, Y.; Yang, G. Delay Difference Feedback Memristive Map: Dynamics, Hardware Implementation, and Application in Path Planning. IEEE Trans. Circuits Syst. I Regul. Pap. 2025, 1–11. [Google Scholar] [CrossRef]
- Bao, H.; Fan, J.; Hua, Z.; Xu, Q.; Bao, B. Discrete Memristive Hopfield Neural Network and Application in Memristor-State-Based Encryption. IEEE Internet Things J. 2025, 12, 31843–31855. [Google Scholar] [CrossRef]
- Lai, Q.; Yang, L.; Chen, G. Two-Dimensional Discrete Memristive Oscillatory Hyperchaotic Maps With Diverse Dynamics. IEEE Trans. Ind. Electron. 2025, 72, 969–979. [Google Scholar] [CrossRef]
- Lai, Q.; Liu, Y. A family of image encryption schemes based on hyperchaotic system and cellular automata neighborhood. Sci. China Technol. Sci. 2025, 68, 1320401. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, C.; Sun, Y.; Yang, G. Discrete Memristive Conservative Chaotic Map: Dynamics, Hardware Implementation, and Application in Secure Communication. IEEE Trans. Cybern. 2025, 55, 3926–3934. [Google Scholar] [CrossRef]
- Ding, D.; Chen, S.; Zhang, H.; Yang, Z.; Jin, F.; Liu, X. Firing pattern transition of fractional-order memristor-coupled Hindmarsh–Rose neurons model and its medical image encryption for region of interest. Nonlinear Dyn. 2024, 112, 10529–10554. [Google Scholar] [CrossRef]
- Feng, W.; Zhang, K.; Zhang, J.; Zhao, X.; Chen, Y.; Cai, B.; Zhu, Z.; Wen, H.; Ye, C. Integrating Fractional-Order Hopfield Neural Network with Differentiated Encryption: Achieving High-Performance Privacy Protection for Medical Images. Fractal Fract. 2025, 9, 426. [Google Scholar] [CrossRef]
- Liu, X.; Mou, J.; Wang, J.; Banerjee, S.; Li, P. Dynamical Analysis of a Novel Fractional-Order Chaotic System Based on Memcapacitor and Meminductor. Fractal Fract. 2022, 6, 671. [Google Scholar] [CrossRef]
- Li, X.; Yang, X.; Ju, X. A novel fractional-order memristive Hopfield neural network for traveling salesman problem and its FPGA implementation. Neural Netw. 2024, 179, 106548. [Google Scholar] [CrossRef]
- Hioual, A.; Ouannas, A.; Oussaeif, T.E.; Grassi, G.; Batiha, I.M.; Momani, S. On variable-order fractional discrete neural networks: Solvability and stability. Fractal Fract. 2022, 6, 119. [Google Scholar] [CrossRef]
- He, S.B.; Sun, K.H.; Wang, H.H. Solution of the fractional-order chaotic system based on Adomian decomposition algorithm and its complexity analysis. Acta Phys. Sin. 2014, 63, 030502. [Google Scholar] [CrossRef]
- Kong, X.; Yu, F.; Yao, W.; Cai, S.; Zhang, J.; Lin, H. Memristor-induced hyperchaos, multiscroll and extreme multistability in fractional-order HNN: Image encryption and FPGA implementation. Neural Netw. 2024, 171, 85–103. [Google Scholar] [CrossRef]
- Chua, L. If it’s pinched it’s a memristor. Semicond. Sci. Technol. 2014, 29, 104001. [Google Scholar] [CrossRef]
- Von Bremen, H.F.; Udwadia, F.E.; Proskurowski, W. An efficient QR based method for the computation of Lyapunov exponents. Phys. D Nonlinear Phenom. 1997, 101, 1–16. [Google Scholar] [CrossRef]
- Yu, X.; Huang, L.; Bao, H.; Bao, B. A Morris-Lecar model with novel fast-slow structure and its FPGA implementation. Sci. China Technol. Sci. 2025, 68, 1520405. [Google Scholar] [CrossRef]
- Wu, H.; Wang, W.; Wang, N.; Chen, M.; Xu, Q. Memristor-regulated multi-scrolls generation method in a cellular neural network. AEU-Int. J. Electron. Commun. 2025, 201, 156000. [Google Scholar] [CrossRef]
- Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E.; Leigh, S.; Levenson, M.; Vangel, M.; Banks, D.; Heckert, A.; et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications; NIST Special Publication 800-22; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2022. [Google Scholar]
- Sun, J.; Li, C.; Wang, Z.; Wang, Y. A Memristive Fully Connect Neural Network and Application of Medical Image Encryption Based on Central Diffusion Algorithm. IEEE Trans. Ind. Inform. 2024, 20, 3778–3788. [Google Scholar] [CrossRef]
- Biamou, A.L.M.; Tamba, V.K.; Tagne, F.K.; Takougang, A.C.N. Fractional-order-induced symmetric multi-scroll chaotic attractors and double bubble bifurcations in a memristive coupled Hopfield neural networks. Chaos Solitons Fractals 2024, 178, 114267. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, C.; Sun, Y.; Yang, G. Memristive multi-wing chaotic hopfield neural network for LiDAR data security. Nonlinear Dyn. 2025, 113, 17161–17176. [Google Scholar] [CrossRef]
- Anzo-Hernández, A.; Zambrano-Serrano, E.; Platas-Garza, M.A.; Volos, C. Dynamic Analysis and FPGA Implementation of Fractional-Order Hopfield Networks with Memristive Synapse. Fractal Fract. 2024, 8, 628. [Google Scholar] [CrossRef]
- Bao, B.; Zhou, C.; Bao, H.; Chen, B.; Chen, M. Heterogeneous Hopfield neural network with analog implementation. Chaos Solitons Fractals 2025, 194, 116234. [Google Scholar] [CrossRef]
Resource | Utilization | Available | Utilization (%) |
---|---|---|---|
LUT | 21,768 | 53,200 | 40.92 |
LUTRAM | 1049 | 17,400 | 6.03 |
FF | 29,257 | 106,400 | 27.50 |
DSP | 118 | 220 | 53.64 |
IO | 34 | 125 | 27.20 |
BUFG | 1 | 32 | 3.13 |
No. | Statistical Tests | p-Value | Pass Rate |
---|---|---|---|
1 | Frequency | 0.275709 | 20/20 |
2 | Block Frequency | 0.534146 | 20/20 |
3 | Cumulative Sums | 0.162606 | 20/20 |
4 | Runs | 0.350485 | 20/20 |
5 | Longest Run | 0.350485 | 20/20 |
6 | Rank | 0.739918 | 20/20 |
7 | FFT | 0.370485 | 20/20 |
8 | Non-Overlapping Template | 0.534146 | 19/20 |
9 | Overlapping Template | 0.035174 | 20/20 |
10 | Universal | 0.911413 | 20/20 |
11 | Approximate Entropy | 0.350485 | 20/20 |
12 | Random Excursions | 0.534146 | 10/10 |
13 | Random Excursions Variant | 0.122325 | 10/10 |
14 | Serial | 0.637119 | 20/20 |
15 | Linear Complexity | 0.213309 | 20/20 |
Reference | Image Size | Horizontal | Vertical | Diagonal |
---|---|---|---|---|
[51] | 0.007900 | – | – | |
[49] | 0.009700 | −0.004700 | −0.005000 | |
[49] | −0.010700 | 0.006300 | −0.004900 | |
[42] | 0.004000 | 0.002300 | 0.002700 | |
Proposed | ||||
Proposed |
Ref. | Image Size | Entropy | NPCR/UACI (%) | Time (s) |
---|---|---|---|---|
[51] | 7.9993 | 99.6100/33.4500 | – | |
[49] | – | 99.6100/– | – | |
[42] | 7.9998 | 99.6095/33.4632 | – | |
[61] | 7.9993 | 99.6080/33.4621 | 0.1496 | |
[67] | 7.9982 | 99.5900/33.4300 | 3.9000 | |
[38] | 7.9994 | –/– | 0.2810 | |
Proposed | 7.9970 | 99.6063/33.5505 | 0.0936 | |
Proposed | 7.9994 | 99.6227/33.4024 | 0.2430 |
Reference | Memristive Device | Attractor Shape | Hidden Attractor | Hardware | Maximum SE Value |
---|---|---|---|---|---|
[67] | One | Single-scroll | No | – | – |
[68] | One | Multi-scroll | No | Arduino-Due | 0.35 |
[69] | Two | Multi-wing | No | FPGA | 0.55 |
[70] | One | Scroll | No | FPGA | 0.45 |
[71] | Zero | Double-scroll | No | Analog Circuit | – |
Proposed | One | Dual-wing | Yes | FPGA | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Yu, F.; Guo, R.; Zheng, M.; Tang, T.; Jin, J.; Wang, C. Dynamic Analysis and FPGA Implementation of a Fractional-Order Memristive Hopfield Neural Network with Hidden Chaotic Dual-Wing Attractors. Fractal Fract. 2025, 9, 561. https://doi.org/10.3390/fractalfract9090561
He S, Yu F, Guo R, Zheng M, Tang T, Jin J, Wang C. Dynamic Analysis and FPGA Implementation of a Fractional-Order Memristive Hopfield Neural Network with Hidden Chaotic Dual-Wing Attractors. Fractal and Fractional. 2025; 9(9):561. https://doi.org/10.3390/fractalfract9090561
Chicago/Turabian StyleHe, Shaoqi, Fei Yu, Rongyao Guo, Mingfang Zheng, Tinghui Tang, Jie Jin, and Chunhua Wang. 2025. "Dynamic Analysis and FPGA Implementation of a Fractional-Order Memristive Hopfield Neural Network with Hidden Chaotic Dual-Wing Attractors" Fractal and Fractional 9, no. 9: 561. https://doi.org/10.3390/fractalfract9090561
APA StyleHe, S., Yu, F., Guo, R., Zheng, M., Tang, T., Jin, J., & Wang, C. (2025). Dynamic Analysis and FPGA Implementation of a Fractional-Order Memristive Hopfield Neural Network with Hidden Chaotic Dual-Wing Attractors. Fractal and Fractional, 9(9), 561. https://doi.org/10.3390/fractalfract9090561