Solution of Time-Fractional Partial Differential Equations via the Natural Generalized Laplace Transform Decomposition Method
Abstract
1. Introduction
2. Preliminaries
3. Main Results
- 1.
- Set , we gained double Sumudu transform
- 2.
- Set and one can get double Laplace transform as
- 3.
- Set and we derive the Laplace-Yang Transform
4. Preparation of the Natural Generalized Laplace Transform for Systems of Fractional Partial Differential Equations
- Convergence:
5. Applications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zayed, E.; Amer, Y.; Shohib, R. The fractional complex transformation for nonlinear fractional partial differential equations in the mathematical physics. J. Assoc. Arab Univ. Basic Appl. Sci. 2016, 19, 59–69. [Google Scholar] [CrossRef]
- Momani, S.; Odibat, Z. Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 2007, 365, 345–350. [Google Scholar] [CrossRef]
- El-Sayed, A.; Elsaid, A.; El-Kalla, I.; Hammad, D. A homotopy perturbation technique for solving partial differential equations of fractional order in finite domains. Appl. Math. Comput. 2012, 218, 8329–8340. [Google Scholar] [CrossRef]
- Jafari, H.; Daftardar-Gejji, V. Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition. Appl. Math. Comput. 2006, 180, 488–497. [Google Scholar] [CrossRef]
- Odibat, Z.; Momani, S. Numerical methods for nonlinear partial differential equations of fractional order. Appl. Math. Modell. 2008, 32, 28–39. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Alyousef, H.; El-Tantawy, S.; Khan, A.; Wyal, N. Solving fractional-order diffusion equations in a plasma and fluids via a novel transform. J. Funct. Spaces 2022, 2022, 1899130. [Google Scholar] [CrossRef]
- Fathima, D.; Alahmadi, R.; Khan, A.; Akhter, A.; Ganie, A. An Efficient Analytical Approach to Investigate Fractional Caudrey-Dodd-Gibbon Equations with Non-Singular Kernel Derivatives. Symmetry 2023, 15, 850. [Google Scholar] [CrossRef]
- Bonyadi, S.; Mahmoudi, Y.; Lakestani, M.; Jahangiri Rad, M. Numerical solution of space-time fractional PDEs with variable coefficients using shifted Jacobi collocation method. Comput. Methods Differ. Equ. 2023, 11, 81–94. [Google Scholar]
- Ibrahim Nuruddeen, R.; Akbar, Y.; Kim, H. On the application of G-integral transform to nonlinear dynamical models with non-integer order derivatives. AIMS Math. 2022, 7, 17859–17878. [Google Scholar] [CrossRef]
- Kim, H. The intrinsic structure and properties of Laplace-typed integral transforms. Math. Probl. Eng. 2017, 2017, 1762729. [Google Scholar] [CrossRef]
- Alhefthi, R.; Eltayeb, H. The Solution of Coupled Burgers’ Equation by G-Laplace Transform. Symmetry 2023, 15, 1764. [Google Scholar] [CrossRef]
- Turab, A.; Montoyo, A.; Nescolarde-Selva, J. Computational and analytical analysis of integral-differential equations for modeling avoidance learning behavior. J. Appl. Math. Comput. 2024, 70, 4423–4439. [Google Scholar] [CrossRef]
- Turab, A.; Montoyo, A.; Nescolarde-Selva, J. Stability and numerical solutions for second-order ordinary differential equations with application in mechanical systems. J. Appl. Math. Comput. 2024, 70, 5103–5128. [Google Scholar] [CrossRef]
- Turab, A.; Sintunavarat, W.; Ullah, F.; Zaidi, S.; Montoyo, A.; Nescolarde-Selva, J. Computational modeling of animal behavior in T-mazes: Insights from machine learning. Ecol. Inf. 2024, 81, 102639. [Google Scholar] [CrossRef]
- Rudolf, H. (Ed.) Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Shah, R.; Khan, H.; Farooq, U.; Baleanu, D.; Kumam, P.; Arif, M. A New Analytical Technique to Solve System of Fractional-Order Partial Differential Equations. IEEE Access 2019, 7, 150037–150050. [Google Scholar] [CrossRef]
- Bayrak, M.; Demir, A. A new approach for space-time fractional partial differential equations by residual power series method. Appl Math. Comput. 2018, 336, 215–230. [Google Scholar] [CrossRef]
- Shah, R.; Khan, H.; Kumam, P.; Arif, M. An analytical technique to solve the system of nonlinear fractional partial differential equations. Mathematics 2019, 7, 505. [Google Scholar] [CrossRef]
- Supaknaree, S.; Nonlapon, K.; Kim, H. Further properties of Laplace-type integral transform. Dyn. Contin. Discrete Impulsive Syst. Ser. A Math. Anal. 2019, 28, 195–215. [Google Scholar] [CrossRef]
- Jafari, H.; Nazari, M.; Baleanu, D.; Khalique, C. A new approach for solving a system of fractional partial differential equations. Comput. Math. Appl. 2013, 66, 838–843. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eltayeb, H.; Aldossari, S. Solution of Time-Fractional Partial Differential Equations via the Natural Generalized Laplace Transform Decomposition Method. Fractal Fract. 2025, 9, 554. https://doi.org/10.3390/fractalfract9090554
Eltayeb H, Aldossari S. Solution of Time-Fractional Partial Differential Equations via the Natural Generalized Laplace Transform Decomposition Method. Fractal and Fractional. 2025; 9(9):554. https://doi.org/10.3390/fractalfract9090554
Chicago/Turabian StyleEltayeb, Hassan, and Shayea Aldossari. 2025. "Solution of Time-Fractional Partial Differential Equations via the Natural Generalized Laplace Transform Decomposition Method" Fractal and Fractional 9, no. 9: 554. https://doi.org/10.3390/fractalfract9090554
APA StyleEltayeb, H., & Aldossari, S. (2025). Solution of Time-Fractional Partial Differential Equations via the Natural Generalized Laplace Transform Decomposition Method. Fractal and Fractional, 9(9), 554. https://doi.org/10.3390/fractalfract9090554