Texture Feature Analysis of the Microstructure of Cement-Based Materials During Hydration
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Processing
2.2. Texture Analysis Based on X-CT Slice Images
2.2.1. Statistical Analysis of Grayscale Histograms
2.2.2. Calculation of Fractal Dimension
- (1)
- Partition the (x, y) plane into grids of size L × L;
- (2)
- Define the scale ratio r = L/M;
- (3)
- Each grid column corresponds to a stack of boxes with a height h, where h satisfies G/h = M/L (G = total grayscale levels);
- (4)
- Within grid (i, j), let l and k represent the maximum and minimum grayscale levels. The number of boxes spanning the intensity range is
- (5)
- The total number of boxes needed to cover the whole image is
- (6)
- The fractal dimension DB is derived from the limit
2.2.3. Gray-Level Co-Occurrence Matrix (GLCM)
3. Results
3.1. Statistical Analysis of Grayscale Histograms
3.2. Fractal Dimension
3.3. GLCM Characteristic Parameters
4. Discussion
4.1. Volatility Analysis
4.2. Discrimination Analysis
5. Conclusions
- (1)
- The average value of mean grayscale value of the slices (MeanG_AVE) increased significantly during the early hydration period (12 h to 7 d), reflecting the accumulation of hydration products and the progressive filling of pores. A slight decline at 31 d indicates microstructural stabilization or potential local porosity redistribution.
- (2)
- Fractal dimension analysis provides an important insight into the microstructural evolution of cement-based materials during hydration. The evolution trend of the average fractal dimension (DB_AVE) with time shows that the complexity of the microstructure in the process of cement hydration decreases logarithmically (y = −0.016 ln (x) + 2.4561, R2 = 0.7953). Due to disordered hydration products, the value of DB_AVE reached the maximum at the early age (12 h), reaching 2.48, and then the interface became smooth with pore refinement and gel coalescence, and gradually decreased to 2.41 (31 d). This shows that hydration drives homogenization of the microstructure instead of increasing roughness.
- (3)
- The four key GLCM descriptors captured hydration-induced changes in texture. Energy increased logarithmically, indicating enhanced grayscale uniformity and material homogenization. Entropy declined rapidly during early hydration, reflecting reduced grayscale randomness and microstructural disorder. Contrast decreased continuously, suggesting the blurring of phase boundaries and a reduction in interfacial gradients. Correlation remained high and slightly increased, indicating stable and coherent spatial relationships among grayscale values.
- (4)
- Through the combined analysis of intra-sample volatility, inter-sample discrimination, and signal-to-noise ratio (SNR), energy, entropy, and contrast were identified as the most robust and sensitive indicators for capturing microstructural evolution across hydration ages.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hanžič, L.; Štefančič, M.; Šter, K.; Zalar Serjun, V.; Šinka, M.; Sapata, A.; Šahmenko, G.; Šerelis, E.; Migliniece, B.; Korat Bensa, L. Collision Milling of Oil Shale Ash as Constituent Pretreatment in Concrete 3D Printing. Infrastructures 2025, 10, 18. [Google Scholar] [CrossRef]
- Pokorska, I.; Poński, M.; Burczyński, T. Multiscale Analysis of Cement Composites. Comput. Assist. Methods Eng. Sci. 2024, 31, 507–518. [Google Scholar] [CrossRef]
- Tang, S.; Wang, Y.; Geng, Z.; Xu, X.; Yu, W.; A, H.; Chen, J. Structure, Fractality, Mechanics and Durability of Calcium Silicate Hydrates. Fractal Fract. 2021, 5, 47. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, J.; Wang, Z.; Zhao, T.; Wang, Z. A review of the interfacial transition zones in concrete: Identification, physical characteristics, and mechanical properties. Eng. Fract. Mech. 2024, 300, 109979. [Google Scholar] [CrossRef]
- Yue, J.; Sheng, J.; Wang, H.; Hu, Y.; Zhang, K.; Luo, Y.; Zhou, Q.; Zhan, M. Investigation on Pore Structure and Permeability of Concrete–Rock Interfacial Transition Zones Based on Fractal Theory. Fractal Fract. 2022, 6, 329. [Google Scholar] [CrossRef]
- Wang, D.; Shi, C.; Wu, Z.; Xiao, J.; Huang, Z.; Fang, Z. A review on ultra high performance concrete: Part II. Hydration, microstructure and properties. Constr. Build. Mater. 2015, 96, 368–377. [Google Scholar] [CrossRef]
- Linderoth, O.; Wadsö, L.; Jansen, D. Long-term cement hydration studies with isothermal calorimetry. Cem. Concr. Res. 2021, 141, 106344. [Google Scholar] [CrossRef]
- Parrott, L.J.; Geiker, M.; Gutteridge, W.A.; Killoh, D. Monitoring Portland cement hydration: Comparison of methods. Cem. Concr. Res. 1990, 20, 919–926. [Google Scholar] [CrossRef]
- Romano, R.C.D.O.; Bernardo, H.M.; Maciel, M.H.; Pileggi, R.G.; Cincotto, M.A. Using isothermal calorimetry, X-ray diffraction, thermogravimetry and FTIR to monitor the hydration reaction of Portland cements associated with red mud as a supplementary material. J. Therm. Anal. Calorim. 2019, 137, 1877–1890. [Google Scholar] [CrossRef]
- Radica, F.; Casarin, A.; Iezzi, G.; Bravo, M.; de Brito, J.; Galderisi, A.; Brando, G.; Nazzari, M.; Scarlato, P. Cement vs aggregates and textures of aggregates in a mortar: Comparative image analysis methods and analytical protocols. Constr. Build. Mater. 2024, 453, 139033. [Google Scholar] [CrossRef]
- Ji, X.; Zhao, W.; Pan, T.; Fu, C.; Han, F.; Du, L.; Sha, J.; Liu, J. Quantitative dispersion characterization of cement particles in hardened cement matrix. J. Build. Eng. 2024, 96, 110439. [Google Scholar] [CrossRef]
- Li, P.; Zhao, W.; Fu, C.; Pan, T.; Ji, X. Segmentation of backscattered electron images of cement-based materials using lightweight U-Net with attention mechanism (LWAU-Net). J. Build. Eng. 2023, 77, 107547. [Google Scholar] [CrossRef]
- Liu, L.; Yang, P.; Zhang, B.; Huan, C.; Guo, L.; Yang, Q.; Song, K.I. Study on hydration reaction and structure evolution of cemented paste backfill in early-age based on resistivity and hydration heat. Constr. Build. Mater. 2021, 272, 121827. [Google Scholar] [CrossRef]
- Cheng, Q.; Meng, W.; Ma, K. Hydration Heat and Hydration Kinetics of Cement Paste Compound with Molybdenum Tailings Powder: A Research Article. Coatings 2023, 13, 2073. [Google Scholar] [CrossRef]
- Li, L.; Mao, L.; Yang, J. A review of principles, analytical methods, and applications of SEM-EDS in cementitious materials characterization. Adv. Mater. Technol-Us 2025, 10, 2401175. [Google Scholar] [CrossRef]
- Li, L.; Yang, J.; Liu, W.; Ren, P. Overview of the application of quantitative backscattered electron (QBSE) image analysis to characterize the cement-based materials. Constr. Build. Mater. 2023, 406, 133332. [Google Scholar] [CrossRef]
- Li, P.; Li, W.; Wang, K.; Zhao, H.; Shah, S.P. Hydration and microstructure of cement paste mixed with seawater–an advanced investigation by SEM-EDS method. Constr. Build. Mater. 2023, 392, 131925. [Google Scholar] [CrossRef]
- Li, L.; Yang, J.; Shen, X. Measuring the hydration product proportion in composite cement paste by using quantitative BSE-EDS image analysis: A comparative study. Measurement 2022, 199, 111290. [Google Scholar] [CrossRef]
- Brisard, S.; Serdar, M.; Monteiro, P.J. Multiscale X-ray tomography of cementitious materials: A review. Cem. Concr. Res. 2020, 128, 105824. [Google Scholar] [CrossRef]
- Song, Y.; Huang, Z.; Shen, C.; Shi, H.; Lange, D.A. Deep learning-based automated image segmentation for concrete petrographic analysis. Cem. Concr. Res. 2020, 135, 106118. [Google Scholar] [CrossRef]
- Zhang, P.; Ding, J.; Guo, J.; Wang, F. Fractal Analysis of Cement-Based Composite Microstructure and Its Application in Evaluation of Macroscopic Performance of Cement-Based Composites: A Review. Fractal Fract. 2024, 8, 304. [Google Scholar] [CrossRef]
- Wang, L.; Zeng, X.; Yang, H.; Lv, X.; Guo, F.; Shi, Y.; Hanif, A. Investigation and Application of Fractal Theory in Cement-Based Materials: A Review. Fractal Fract. 2021, 5, 247. [Google Scholar] [CrossRef]
- Lin, P.; Kuo, F. The space image research base on the construction method of surface texture of the cement tiles. Case Stud. Constr. Mat. 2022, 16, e00902. [Google Scholar] [CrossRef]
- Cannon, J.; Mandelbrot, B. The fractal geometry of nature. Am. Math. Mon. 1984, 91, 594. [Google Scholar] [CrossRef]
- Zhou, H.; Ge, C.; Chen, Y.; Song, X. Study on performance and fractal characteristics of high-strength manufactured sand concrete with different MB values. Front. Earth Sci. 2023, 11, 1140038. [Google Scholar] [CrossRef]
- Lü, Q.; Qiu, Q.; Zheng, J.; Wang, J.; Zeng, Q. Fractal dimension of concrete incorporating silica fume and its correlations to pore structure, strength and permeability. Constr. Build. Mater. 2019, 228, 116986. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, F.Y. Analysis of image texture features based on gray level co-occurrence matrix. Appl. Mech. Mater. 2012, 204, 4746–4750. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, F.; Zhong, L.; Guo, L.; Wang, L.; Wang, M.; Zhang, Y.; Li, S. Texture analysis of the microstructure of concrete with different concentrations of superabsorbent polymer after internal curing. Mater. Today Commun. 2021, 27, 102361. [Google Scholar] [CrossRef]
- Guo, L.; Wang, W.; Zhong, L.; Guo, L.; Zhang, F.; Guo, Y. Texture analysis of the microstructure of internal curing concrete based on image recognition technology. Case Stud. Constr. Mat. 2022, 17, e1360. [Google Scholar] [CrossRef]
- Guo, J.; Li, M.; Wang, L.; Yang, B.; Zhang, L.; Chen, Z.; Han, S.; Garcia-Hernandez, L.; Abraham, A. Estimating cement compressive strength using three-dimensional microstructure images and deep belief network. Eng. Appl. Artif. Intel. 2020, 88, 103378. [Google Scholar] [CrossRef]
- Wang, P.; Qiao, H.; Zhang, Y.; Li, Y.; Feng, Q.; Chen, K. Meso-damage evolution analysis of magnesium oxychloride cement concrete based on X-CT and grey-level co-occurrence matrix. Constr. Build. Mater. 2020, 255, 119373. [Google Scholar] [CrossRef]
- Zhu, L.; Dang, F.; Xue, Y.; Ding, W.; Zhang, L. Analysis of micro-structural damage evolution of concrete through coupled X-ray computed tomography and gray-level co-occurrence matrices method. Constr. Build. Mater. 2019, 224, 534–550. [Google Scholar] [CrossRef]
- Fernandez-Sanchez, J.; Cuesta, A.; Shirani, S.; Redondo-Soto, C.; De la Torre, A.G.; Santacruz, I.; Salcedo, I.R.; Leon-Reina, L.; Aranda, M.A. Dataset for ‘Mix and Measure II–Joint High-Energy Laboratory Powder Diffraction and Mi-Crotomography for Cement Hydration Studies’ [Data set]. Zenodo. Available online: https://zenodo.org/records/10390818 (accessed on 1 May 2025).
- Fernandez-Sanchez, J.; Cuesta, A.; Shirani, S.; Redondo-Soto, C.; De la Torre, A.G.; Santacruz, I.; Salcedo, I.R.; Leon-Reina, L.; Aranda, M.A. Mix and measure II: Joint high-energy laboratory powder diffraction and microtomography for cement hydration studies. Appl. Crystallogr. 2024, 57, 1067–1084. [Google Scholar] [CrossRef]
- Shirani, S.; Cuesta, A.; Morales-Cantero, A.; Santacruz, I.; Diaz, A.; Trtik, P.; Holler, M.; Rack, A.; Lukic, B.; Brun, E.; et al. 4D nanoimaging of early age cement hydration. Nat. Commun. 2023, 14, 2652. [Google Scholar] [CrossRef] [PubMed]
- Shirani, S.; Cuesta, A.; De la Torre, A.G.; Santacruz, I.; Morales-Cantero, A.; Koufany, I.; Redondo-Soto, C.; Salcedo, I.; León-Reina, L.; Aranda, M.A.G. Mix and measure-Combining in situ X-ray powder diffraction and microtomography for accurate hydrating cement studies. Cem. Concr. Res. 2024, 175, 107370. [Google Scholar] [CrossRef]
- Ji, X.; Zhao, W.; Pan, T.; Han, F.; Du, L.; Sha, J.; Liu, J. Effect of ester modified triethanolamine on the grinding quality of cement: Insight from fractal and multifractal analysis. Constr. Build. Mater. 2024, 443, 137752. [Google Scholar] [CrossRef]
- Guan, D.; Pan, T.; Guo, R.; Wei, Y.; Qi, R.; Fu, C.; Zhang, Z.; Zhu, Y. Fractal and Multifractal Analysis of Microscopic Pore Structure of UHPC Matrix Modified with Nano Silica. Fractal Fract. 2024, 8, 360. [Google Scholar] [CrossRef]
- Lee, M.; Lee, S. Box-Counting Dimension Sequences of Level Sets in AI-Generated Fractals. Fractal Fract. 2024, 8, 730. [Google Scholar] [CrossRef]
- Zhang, L.; Dang, F.; Ding, W.; Zhu, L. Quantitative study of meso-damage process on concrete by CT technology and improved differential box counting method. Measurement 2020, 160, 107832. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man. Cybern. 2007, 610–621. [Google Scholar] [CrossRef]
- Singh, A. Computer Vision and Texture Analysis for Characterization of X-Ray Images of Rocks. Ph.D. Thesis, UNSW Sydney, Sydney, NSW, Australia, 2020. [Google Scholar]
- Li, M.; Yang, B.; Wang, L.; Liu, Y.; Zhao, X.Y.; Zhou, J. The prediction of cement compressive strength based on gray level images and neural network. In Proceedings of the 2016 3rd International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS), Jinzhou, China, 26–29 August 2016; pp. 103–108. [Google Scholar]
Parameter | SNR |
---|---|
MeanG | 0.95 |
DB | 1.85 |
Energy | 9.34 |
Entropy | 8.78 |
Contrast | 8.09 |
Correlation | 2.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, T.; Guo, R.; Yan, Y.; Fu, C.; Lin, R. Texture Feature Analysis of the Microstructure of Cement-Based Materials During Hydration. Fractal Fract. 2025, 9, 543. https://doi.org/10.3390/fractalfract9080543
Pan T, Guo R, Yan Y, Fu C, Lin R. Texture Feature Analysis of the Microstructure of Cement-Based Materials During Hydration. Fractal and Fractional. 2025; 9(8):543. https://doi.org/10.3390/fractalfract9080543
Chicago/Turabian StylePan, Tinghong, Rongxin Guo, Yong Yan, Chaoshu Fu, and Runsheng Lin. 2025. "Texture Feature Analysis of the Microstructure of Cement-Based Materials During Hydration" Fractal and Fractional 9, no. 8: 543. https://doi.org/10.3390/fractalfract9080543
APA StylePan, T., Guo, R., Yan, Y., Fu, C., & Lin, R. (2025). Texture Feature Analysis of the Microstructure of Cement-Based Materials During Hydration. Fractal and Fractional, 9(8), 543. https://doi.org/10.3390/fractalfract9080543