Neural Networks-Based Analytical Solver for Exact Solutions of Fractional Partial Differential Equations
Abstract
1. Introduction
- We introduce an innovative framework for deriving exact analytical solutions to fPDEs, ensuring mathematically rigorous results free from computational errors.
- Potential analytical solutions of fPDEs are constructed via NN architectures. Transformed inputs undergo feedforward propagation to yield network outputs, which subsequently serve as trial functions in the fPDE solutions framework.
- Our approach simplifies the fPDE into computationally feasible algebraic systems through trial function application. The synaptic weights and biases of NNs are then resolved through undetermined coefficient optimization.
- Exact analytical solutions for fPDEs are obtained in a data-independent manner through this computational framework. NNs are employed to impose structural constraints on trial function formulation, enhancing mathematical tractability.
2. Methodology
3. Applications
3.1. Fractional Wave Equation
3.2. Fractional Telegraph Equation
3.3. Fractional Sharma–Tasso–Olever Equation
3.4. Fractional Biological Population Model
4. Discussions
4.1. Neural Networks-Based Analytical Solver
4.2. Physics-Informed Neural Networks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cristofaro, L.; Garra, R.; Scalas, E.; Spassiani, I. A fractional approach to study the pure-temporal Epidemic Type Aftershock Sequence (ETAS) process for earthquakes modeling. Fract. Calc. Appl. Anal. 2023, 26, 461–479. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, H.G.; Stowell, H.H.; Zayernouri, M.; Hansen, S.E. A review of applications of fractional calculus in Earth system dynamics. Chaos Solitons Fractals 2017, 102, 29–46. [Google Scholar] [CrossRef]
- Molina, M.I. Fractional electrical impurity. New J. Phys. 2024, 26, 013020. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Qi, Q.W.; Hu, J.Y.; Dai, J.S.; Yang, C.D. Adaptive fault-tolerant control for consensus of nonlinear fractional-order multi-agent systems with diffusion. Fractal Fract. 2023, 7, 760. [Google Scholar] [CrossRef]
- Baliarsingh, P.; Nayak, L. Fractional derivatives with variable memory. Iran. J. Sci. Technol. Trans. A Sci. 2022, 46, 849–857. [Google Scholar] [CrossRef]
- Hu, J.B. Studying the memory property and event-triggered control of fractional systems. Inf. Sci. 2024, 662, 120218. [Google Scholar] [CrossRef]
- Guo, J.; Xu, D.; Qiu, W.L. A finite difference scheme for the nonlinear time-fractional partial integro-differential equation. Math. Methods Appl. Sci. 2020, 43, 3392–3412. [Google Scholar] [CrossRef]
- Qiao, H.L.; Cheng, A.J. A fast finite difference method for 2D time variable fractional mobile/immobile equation. J. Appl. Math. Comput. 2024, 70, 551–577. [Google Scholar] [CrossRef]
- Hu, H.Z.; Chen, Y.P.; Zhou, J.W. Two-grid finite element method for time-fractional nonlinear schrodinger equation. J. Comput. Math. 2024, 42, 1124–1144. [Google Scholar] [CrossRef]
- Sheng, Z.H.; Liu, Y.; Li, Y.H. Finite element method combined with time graded meshes for the time-fractional coupled Burgers’ equations. J. Appl. Math. Comput. 2024, 70, 513–533. [Google Scholar] [CrossRef]
- Jiao, Y.J.; Li, T.T.; Zhang, Z.Q. Jacobi spectral collocation method of space-fractional Navier-Stokes equations. Appl. Math. Comput. 2025, 488, 129111. [Google Scholar] [CrossRef]
- Zhang, X.X.; Wang, J.H.; Wu, Z.S.; Tang, Z.Y.; Zeng, X.Y. Spectral Galerkin methods for Riesz space-fractional convection–diffusion equations. Fractal Fract. 2024, 8, 431. [Google Scholar] [CrossRef]
- Gu, Q.L.; Chen, Y.P.; Zhou, J.W.; Huang, J. A fast linearized virtual element method on graded meshes for nonlinear time-fractional diffusion equations. Numer. Algorithms 2024, 97, 1141–1177. [Google Scholar] [CrossRef]
- Gu, Q.L.; Chen, Y.P.; Zhou, J.W.; Huang, Y.Q. A two-grid virtual element method for nonlinear variable-order time-fractional diffusion equation on polygonal meshes. Int. J. Comput. Math. 2023, 100, 2124–2139. [Google Scholar] [CrossRef]
- Yu, S.S.; Guo, M.; Chen, X.Y.; Qiu, J.L.; Sun, J.Q. Personalized movie recommendations based on a multi-feature attention mechanism with neural networks. Mathematics 2023, 11, 1355. [Google Scholar] [CrossRef]
- Li, S.A.; Cao, J.D.; Liu, H.; Huang, C.D. Delay-dependent parameters bifurcation in a fractional neural network via geometric methods. Appl. Math. Comput. 2024, 478, 128812. [Google Scholar] [CrossRef]
- Choudhary, K.; DeCost, B.; Chen, C.; Jain, A.; Tavazza, F.; Cohn, R.; Park, C.W.; Choudhary, A.; Agrawal, A.; Billinge, S.J.L.; et al. Recent advances and applications of deep learning methods in materials science. NPJ Comput. Mater. 2022, 8, 59. [Google Scholar] [CrossRef]
- Liu, Z.P.; Zhang, Z.M.; Lei, Z.V.; Omura, M.; Wang, R.L.; Gao, S.C. Dendritic deep learning for medical segmentation. IEEE/CAA J. Autom. Sin. 2024, 11, 803–805. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Mao, T.; Zhou, D.X. Approximation of functions from Korobov spaces by shallow neural networks. Inf. Sci. 2024, 670, 120573. [Google Scholar] [CrossRef]
- Anastassiou, G.A.; Kouloumpou, D. Neural network approximation for time splitting random functions. Mathematics 2023, 11, 2183. [Google Scholar] [CrossRef]
- Principe, J.C.; Chen, B.D. Universal approximation with convex optimization: Gimmick or reality? IEEE Comput. Intell. Mag. 2015, 10, 68–77. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Bao, F.; Ju, L.L.; Zhang, G.N. Transferable neural networks for partial differential equations. J. Sci. Comput. 2024, 99, 2. [Google Scholar] [CrossRef]
- Li, Y.; Gao, W.; Ying, S.H. RBF-Assisted hybrid neural network for solving partial differential equations. Mathematics 2024, 12, 1617. [Google Scholar] [CrossRef]
- Lu, L.; Meng, X.H.; Mao, Z.P.; Karniadakis, G.E. DeepXDE: A deep learning library for solving differential equations. SIAM Rev. 2021, 63, 208–227. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Cai, S.Z.; Mao, Z.P.; Wang, Z.C.; Yin, M.L.; Karniadakis, G.E. Physics-informed neural networks (PINNs) for fluid mechanics: A review. Acta Mech. Sin. 2021, 37, 1727–1738. [Google Scholar] [CrossRef]
- Hou, Q.Z.; Li, Y.X.; Singh, V.P.; Sun, Z.W. Physics-informed neural network for diffusive wave model. J. Appl. Math. Comput. 2024, 637, 131261. [Google Scholar] [CrossRef]
- Pang, G.F.; Lu, L.; Karniadakis, G.E. fPINNs: Fractional physics-informed neural networks. SIAM J. Sci. Comput. 2019, 41, A2603–A2626. [Google Scholar] [CrossRef]
- Wang, S.P.; Zhang, H.; Jiang, X.Y. Fractional physics-informed neural networks for time-fractional phase field models. Nonlinear Dyn. 2022, 110, 2715–2739. [Google Scholar] [CrossRef]
- Ren, H.P.; Meng, X.Y.; Liu, R.R.; Hou, J.; Yu, Y.G. A class of improved fractional physics informed neural networks. Neurocomputing 2023, 562, 126890. [Google Scholar] [CrossRef]
- Wu, G.C.; Wu, Z.Q.; Zhu, W. Data-driven discrete fractional chaotic systems, new numerical schemes and deep learning. Chaos 2024, 34, 093144. [Google Scholar] [CrossRef]
- Yuan, B.; Wang, H.; Heitor, A.; Chen, X.H. f-PICNN: A physics-informed convolutional neural network for partial differential equations with space-time domain. J. Comput. Phys. 2024, 515, 113284. [Google Scholar] [CrossRef]
- Wang, S.P.; Zhang, H.; Jiang, X.Y. Physics-informed neural network algorithm for solving forward and inverse problems of variable-order space-fractional advection—Diffusion equations. Neurocomputing 2023, 535, 64–82. [Google Scholar] [CrossRef]
- Zhang, R.F.; Li, M.C.; Albishari, M.; Zheng, F.C.; Lan, Z.Z. Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Comput. 2021, 403, 126201. [Google Scholar] [CrossRef]
- Zhang, R.F.; Li, M.C.; Cherraf, A.; Vadyala, S.R. The interference wave and the bright and dark soliton for two integro-differential equation by using BNNM. Nonlinear Dyn. 2023, 111, 8637–8646. [Google Scholar] [CrossRef]
- Zhang, R.F.; Li, M.C.; Gan, J.Y.; Li, Q.; Lan, Z.Z. Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Solitons Fractals 2022, 154, 111692. [Google Scholar] [CrossRef]
- Jumarie, G. Fractional Partial Differential Equations and Modified Riemann-liouville Derivative New Methods for Solution. J. Appl. Math. Comput. 2007, 8, 31–48. [Google Scholar] [CrossRef]
- Mahdy, A.; Marai, G. Fractional complex transform for solving the fractional differential equations. Glob. J. Pure Appl. Math. 2018, 14, 17–37. [Google Scholar]
- Song, L.N.; Wang, Q.; Zhang, H.Q. Rational approximation solution of the fractional Sharma—Tasso—Olever equation. J. Comput. Appl. Math. 2009, 224, 210–218. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.Q. Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 2011, 375, 1069–1073. [Google Scholar] [CrossRef]
- Zhang, R.F.; Bilige, S. Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 2019, 95, 3041–3048. [Google Scholar] [CrossRef]
Architectural Component | Configuration Details |
---|---|
Network Depth | Number of hidden layers |
Neuronal distribution across layers | |
Node Characteristics | Nonlinear activation selection |
Bias term implementation | |
Output Processing | Linear combination of weighted inputs |
Computational Performance Indicators | PINNs | Our Method | |
---|---|---|---|
Case I | Calculation time (s) | 372.5405 + 0.0210 | 0 + 1.03 |
Mean absolute error | 0.0004140 | 0 | |
Maximum absolute error | 0.0007336 | 0 | |
relative error | 0.0001568 | 0 | |
Case II | Calculation time (s) | 456.6720 + 0.0240 | 0 + 1.17 |
Mean absolute error | 0.000120 | 0 | |
Maximum absolute error | 0.0002219 | 0 | |
relative error | 0.0004117 | 0 |
Our Method | PINNs | |
---|---|---|
Foundation | Built upon strict mathematical derivations | Integrates physical laws with deep learning |
Result type | Analytical solution | Approximate solution |
Data dependency | No training data required | Extensive datasets |
Model transparency | Clear and logical explanations | Limited interpretability |
Computational process | Direct computation without iterations | Requires repeated parameter updates |
Calculation cost | Low | High |
Precision | Completely accurate | With errors |
Optimization algorithm | None | Need |
Modify conditions | No need to retrain | Retraining the NNs |
Randomness | No | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, S.; Liu, Y.; Yan, L.; Zhang, R.; Wu, S. Neural Networks-Based Analytical Solver for Exact Solutions of Fractional Partial Differential Equations. Fractal Fract. 2025, 9, 541. https://doi.org/10.3390/fractalfract9080541
Yuan S, Liu Y, Yan L, Zhang R, Wu S. Neural Networks-Based Analytical Solver for Exact Solutions of Fractional Partial Differential Equations. Fractal and Fractional. 2025; 9(8):541. https://doi.org/10.3390/fractalfract9080541
Chicago/Turabian StyleYuan, Shanhao, Yanqin Liu, Limei Yan, Runfa Zhang, and Shunjun Wu. 2025. "Neural Networks-Based Analytical Solver for Exact Solutions of Fractional Partial Differential Equations" Fractal and Fractional 9, no. 8: 541. https://doi.org/10.3390/fractalfract9080541
APA StyleYuan, S., Liu, Y., Yan, L., Zhang, R., & Wu, S. (2025). Neural Networks-Based Analytical Solver for Exact Solutions of Fractional Partial Differential Equations. Fractal and Fractional, 9(8), 541. https://doi.org/10.3390/fractalfract9080541