Existence of Positive Solutions for a Class of Nabla Fractional Difference Equations with Parameter-Dependent Summation Boundary Conditions
Abstract
1. Introduction
- We obtain an interval of the parameter in which the related Green’s function is strictly positive.
2. Preliminaries
- (a)
- for and for ;
- (b)
- is a decreasing function of s for and . Moreover, it is an increasing function of ζ for and ;
- (c)
- ;
- (d)
- ;
- (e)
- .
3. Construction of Green’s Function
4. Existence Results
- 1.
- T has a fixed point in ;
- 2.
- Or there exists a and such that .
- (C1)
- There exists and a nondecreasing function such that
- (C2)
- There exists such thatwhere
5. Positive Green’s Function
- (i)
- ;
- (ii)
- ϕ is a positive nondecreasing function on .
6. Examples
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications, 1st ed.; Springer Science & Business Media: Boston, MA, USA, 2001. [Google Scholar]
- Ferreira, R.A.C. Discrete Fractional Calculus and Fractional Difference Equations; Springer Briefs in Mathematics; Springer: Cham, Switzland, 2022. [Google Scholar]
- Goodrich, C.; Peterson, A.C. Discrete Fractional Calculus; Springer: Cham, Switzland, 2015. [Google Scholar]
- Podlubny, I. Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Mathematics in Science and Engineering; Academic Press, Inc.: San Diego, CA, USA, 1999. [Google Scholar]
- Abdeljawad, T. On delta and nabla Caputo fractional differences and dual identities. Discret. Dyn. Nat. Soc. 2013, 2013, 406910. [Google Scholar] [CrossRef]
- Jia, B.; Erbe, L.; Peterson, A.C. Two monotonicity results for nabla and delta fractional differences. Arch. Math. 2015, 104, 589–597. [Google Scholar] [CrossRef]
- Jia, B.; Erbe, L.; Peterson, A. Convexity for nabla and delta fractional differences. J. Differ. Equ. Appl. 2015, 21, 360–373. [Google Scholar]
- Anastassiou, G.A. Nabla discrete fractional calculus and nabla inequalities. Math. Comput. Model. 2010, 51, 562–571. [Google Scholar] [CrossRef]
- Ahrendt, K.; Kissler, C. Green’s function for higher-order boundary value problems involving a nabla Caputo fractional operator. J. Differ. Equ. Appl. 2019, 25, 788–800. [Google Scholar] [CrossRef]
- Chen, C.; Bohner, M.; Jia, B. Existence and uniqueness of solutions for nonlinear Caputo fractional difference equations. Turk. J. Math. 2020, 44, 857–869. [Google Scholar] [CrossRef]
- Ikram, A. Lyapunov inequalities for nabla Caputo boundary value problems. J. Differ. Equ. Appl. 2019, 25, 757–775. [Google Scholar] [CrossRef]
- Almusawa, M.Y.; Mohammed, P.O. Approximation of sequential fractional systems of Liouville-Caputo type by discrete delta difference operators. Chaos Soliton. Fract. 2023, 176, 114098. [Google Scholar] [CrossRef]
- Cabada, A.; Dimitrov, N.; Jonnalagadda, J.M. Non-trivial solutions of non-autonomous nabla fractional difference boundary value problems. Symmetry 2021, 13, 1101. [Google Scholar] [CrossRef]
- Jonnalagadda, J.M. On a nabla fractional boundary value problem with general boundary conditions. AIMS Math. 2020, 5, 204–215. [Google Scholar] [CrossRef]
- Ardjouni, A.; Boulares, H.; Djoudi, A. Stability of nonlinear neutral nabla fractionaldifference equations. Commun. Optim. Theory 2018, 2018, 8. [Google Scholar]
- Atici, F.; Eloe, P.W. Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ. 2009, 2009, 12. [Google Scholar] [CrossRef]
- Atici, F.; Eloe, P.W. Linear systems of fractional nabla difference equations. Rocky Mountain J. Math. 2011, 41, 353–370. [Google Scholar] [CrossRef]
- Dimitrov, N.D.; Jonnalagadda, J.M. Existence of positive solutions for a class of nabla fractional boundary value problems. Fractal Fract. 2025, 9, 131. [Google Scholar] [CrossRef]
- Costabile, F.; Napoli, A. A multipoint Birkhoff type boundary value problem. J. Numer. Math. 2015, 23, 259. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. Fractional Difference Calculus. Univalent Functions, Fractional Calculus, and Their Applications; Ellis Horwood Series in Mathematics and Its Applications; Ellis Horwood: Horwood, Chichester, UK, 1989. [Google Scholar]
- Ahrendt, K.; Castle, L.; Holm, M.; Yochman, K. Laplace transforms for the nabla-difference operator and a fractional variation of parameters formula. Commun. Appl. Anal. 2012, 16, 317–348. [Google Scholar]
- Bastos, N.; Torres, D. Combined delta-nabla sum operator in discrete fractional caclulus. Commun. Frac. Calc. 2010, 1, 41–47. [Google Scholar]
- Agarwal, R.P.; Baleanu, D.; Rezapour, S.; Salehi, S. The existence of solutions for some fractional finite difference equations via sum boundary conditions. Adv. Differ. Equ. 2014, 2014, 282. [Google Scholar] [CrossRef]
- Haider, S.S.; Rehman, M.U. Ulam–Hyers–Rassias Stability and Existence of Solutions to Nonlinear Fractional Difference Equations with Multipoint Summation Boundary Condition. Acta Math. Sci. 2020, 40, 589–602. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Y.; Zhou, L. Fractional boundary value problem with nabla difference equation. J. Appl. Anal. Comput. 2021, 11, 911–919. [Google Scholar] [CrossRef]
- Liu, X.; Jia, B.; Gensler, S.; Erbe, L.; Peterson, A. Convergence of approximate solutions to nonlinear Caputo nabla fractional difference equations with boundary conditions. Electron. J. Differ. Equ. 2020, 2020, 1–19. [Google Scholar] [CrossRef]
- Eralp, B.; Topal, F.S. Monotone method for discrete fractional boundary value problems. Int. J. Nonlinear Anal. Appl. 2022, 13, 1989–1997. [Google Scholar]
- Dimitrov, N.D.; Jonnalagadda, J.M. Existence Results for Nabla Fractional Problems with Anti-Periodic Boundary Conditions. Mathematics 2025, 13, 2487. [Google Scholar] [CrossRef]
- Dimitrov, N.D.; Jonnalagadda, J.M. Existence, uniqueness and stability of solutions of a nabla fractional difference equations. Fractal Fract. 2024, 8, 591. [Google Scholar] [CrossRef]
- Granas, A.; Dugundji, J. Fixed Point Theory. Springer Monographs in Mathematics; Springer: New York, NY, USA, 2003. [Google Scholar]
- Krasnosel’skii, M.A.; Zabreiko, P.P. Geometrical Methods of Nonlinear Analysis; Springer: New York, NY, USA, 1984. [Google Scholar]
- Cabada, A.; Dimitrov, N.; Jonnalagadda, J.M. Green’s functions and existence of solutions of nonlinear fractional implicit difference equations with Dirichlet boundary conditions. Opusc. Math. 2024, 44, 167–195. [Google Scholar] [CrossRef]
• | ||||||
---|---|---|---|---|---|---|
0 | 1.3936 | 1.0904 | 1.1130 | 1.1735 | 1.2420 | |
0 | 1.5484 | 2.3227 | 1.9033 | 1.8872 | 1.9356 | |
0 | 1.2387 | 1.8581 | 2.3227 | 1.7098 | 1.5485 | |
0 | 0.8258 | 1.2387 | 1.5484 | 1.8065 | 1.0323 |
• | ||||||
---|---|---|---|---|---|---|
0 | −30.3708 | −46.5563 | −58.4453 | −68.3112 | −76.9282 | |
0 | −47.9540 | −71.9309 | −90.9137 | −106.3993 | −119.8867 | |
0 | −38.3632 | −57.5448 | −71.9309 | −84.9194 | −95.9094 | |
0 | −25.5754 | −38.3632 | −47.9540 | −55.9463 | −63.9396 |
• | ||||||
---|---|---|---|---|---|---|
0 | 41.1590 | 62.1136 | 77.7982 | 90.8557 | 102.2742 | |
0 | −0.0009 | −0.0014 | −0.0018 | −0.0021 | −0.0024 | |
0 | −30.3708 | −46.5563 | −58.4453 | −68.3112 | −76.9282 | |
0 | −47.9540 | −71.9309 | −90.9137 | −106.3993 | −119.8867 | |
0 | −38.3632 | −57.5448 | −71.9309 | −84.9194 | −95.9094 | |
0 | −25.5754 | −38.3632 | −47.9540 | −55.9463 | −63.9396 |
• | ||||||
---|---|---|---|---|---|---|
0 | 1 | 0.7088 | 0.6360 | 0.6170 | 0.6160 | |
0 | 1.1520 | 1.7280 | 1.1600 | 1.0200 | 0.9600 | |
0 | 0.9216 | 1.3824 | 1.7280 | 1.0160 | 0.7680 | |
0 | 0.6144 | 0.9216 | 1.1520 | 1.3440 | 0.5120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrov, N.D.; Jonnalagadda, J.M. Existence of Positive Solutions for a Class of Nabla Fractional Difference Equations with Parameter-Dependent Summation Boundary Conditions. Fractal Fract. 2025, 9, 513. https://doi.org/10.3390/fractalfract9080513
Dimitrov ND, Jonnalagadda JM. Existence of Positive Solutions for a Class of Nabla Fractional Difference Equations with Parameter-Dependent Summation Boundary Conditions. Fractal and Fractional. 2025; 9(8):513. https://doi.org/10.3390/fractalfract9080513
Chicago/Turabian StyleDimitrov, Nikolay D., and Jagan Mohan Jonnalagadda. 2025. "Existence of Positive Solutions for a Class of Nabla Fractional Difference Equations with Parameter-Dependent Summation Boundary Conditions" Fractal and Fractional 9, no. 8: 513. https://doi.org/10.3390/fractalfract9080513
APA StyleDimitrov, N. D., & Jonnalagadda, J. M. (2025). Existence of Positive Solutions for a Class of Nabla Fractional Difference Equations with Parameter-Dependent Summation Boundary Conditions. Fractal and Fractional, 9(8), 513. https://doi.org/10.3390/fractalfract9080513