Next Article in Journal
Estimation of Fractal Dimension and Semantic Segmentation of Motion-Blurred Images by Knowledge Distillation in Autonomous Vehicle
Previous Article in Journal
A Double-Parameter Regularization Scheme for the Backward Diffusion Problem with a Time-Fractional Derivative
Previous Article in Special Issue
Existence and Uniqueness Analysis for (k, ψ)-Hilfer and (k, ψ)-Caputo Sequential Fractional Differential Equations and Inclusions with Non-Separated Boundary Conditions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Solutions to Variable-Order Fractional BVPs with Multipoint Data in Ws,p Spaces

by
Zineb Bellabes
1,2,
Kadda Maazouz
3,*,
Naima Boussekkine
2 and
Rosana Rodríguez-López
4,5
1
Laboratory of Fundamental and Applied Mathematics (LMFAO), University of Oran 1, Ahmed Benbella, Oran 31000, Algeria
2
Department of Mathematics, Faculty of Science and Technology, Relizane University, Relizane 48000, Algeria
3
Department of Mathematics, Faculty of Mathematics and Computer Science, Ibn Khaldoun University, Tiaret 14000, Algeria
4
CITMAga, 15782 Santiago de Compostela, Spain
5
Departamento de Estatística, Análise Matemática e Optimización, Facultade de Matemáticas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
*
Author to whom correspondence should be addressed.
Fractal Fract. 2025, 9(7), 461; https://doi.org/10.3390/fractalfract9070461
Submission received: 26 May 2025 / Revised: 7 July 2025 / Accepted: 11 July 2025 / Published: 15 July 2025

Abstract

This study explores the existence of positive solutions within a Sobolev space for a boundary value problem that involves Riemann–Liouville fractional derivatives of variable order. The analysis utilizes the method of upper and lower solutions in combination with the Schauder fixed-point theorem. To illustrate the theoretical findings, a numerical example is included.

1. Introduction

Fractional calculus has emerged as a prominent interdisciplinary field, expanding its influence well beyond mathematics into a wide range of scientific disciplines. In physics [1], it offers powerful methods for modeling complex systems, while in chemical kinetics [2], its nonlocal operators provide deeper insights into reaction dynamics. Applications in fluid dynamics [3] and viscoelasticity [4] exploit fractional derivatives to capture memory-dependent behaviors in materials effectively. This mathematical framework has also shown significant potential in areas such as electrochemistry [5], elasticity [6], and various branches of engineering [7]. In the social sciences [8], fractional calculus is increasingly used for modeling economic systems and analyzing financial processes [8,9], particularly those characterized by long-term memory. It also plays a vital role in biological and medical research [10,11], aiding in the study of growth patterns and the diffusion of drugs. Moreover, it enhances analytical methods in statistical mechanics [12] and image processing. Fractional models have proven especially effective in describing phenomena like nonlinear heat conduction [13], optimal control problems, and complex cosmic behaviors, where classical differential equations fall short [14].
The study of multipoint boundary value problems (BVPs) has attracted significant attention due to their broad applicability in physics and applied mathematics. Early work by Gupta [15] established solvability criteria for three-point nonlinear BVPs in second-order ODEs, while subsequent research extended these results to m-point problems under nonlinear growth conditions (e.g., Feng et al. [16], Ma et al. [17]). Further advances include bifurcation methods for nodal solutions (Sun et al. [18]), positivity analysis (Zhang et al. [19]), and extensions to Banach spaces (Zhao et al. [20]) and fractional differential equations (Lv [21]). A system-based approach was later developed by Henderson et al. [22].
Despite its versatility, no single, universally effective method exists to address all classical problems related to arbitrary fractional differential equations. To study the existence, uniqueness, and qualitative properties of solutions, researchers employ a variety of analytical techniques, including the method of upper and lower solutions, Mawhin’s continuation theory, decomposition approaches, variational iteration methods, and homotopy methods.
Recently, there has been significant attention on variable-order fractional operators. These operators have been rigorously defined and are increasingly being used to construct evolutionary systems of equations. They are invaluable tools for accurately modeling dynamic and complex real-world systems across various fields, including biology, mechanics, transport phenomena, and control theory. As the field continues to evolve, fractional calculus remains an active area of research, with new operators being developed to leverage their unique characteristics in addressing challenging scientific and engineering problems. The Caputo fractional derivative is commonly used because it works well with classical initial conditions. However, in this context, the Riemann–Liouville operator is preferred because it aligns more naturally with the integral formulation of the problem and offers analytical benefits for managing nonlocal boundary conditions. This selection is consistent with physical models, where singular kernel behaviors and memory effects play a significant role, as discussed in [23].
The scientific community has increasingly focused on variable order fractional calculus as a powerful tool for modeling complex engineering and physical systems. For those interested in a deeper understanding of this evolving field [24,25], several comprehensive studies can be found in [26,27,28,29]. The fundamental idea behind VOFC lies in generalizing classical fractional operators of fixed order w to operators with variable order, expressed as w ( · ) . Notably, between 2021 and 2022, a number of influential works have advanced the theory and applications of VOFC, as highlighted in [26,27,28,29].
In the particular study [30], the authors investigate the existence of solutions for a boundary value problem that involves the Riemann–Liouville fractional derivative, subject to integral conditions:
D 0 + w v ( ε ) + B ε , v ( ε ) , D 0 + γ   v ( ε ) = 0 , 0 < ε < 1 , lim ε 0 + ε i w   v ( ε ) = 0 , i = 2 , , n , v ( 1 ) = c = 0 m λ c I 0 + β v ( η c ) .
Building on the previous discussions, this paper introduces new qualitative findings related to the variable-order Riemann–Liouville fractional boundary value problem with integral conditions:
D 0 + w ( ε )   v ( ε ) + B ε , v ( ε ) , D 0 + γ ( ε )   v ( ε ) = 0 , 0 < ε < 1 , lim ε 0 + ε i w ( ε )   v ( ε ) = 0 , i = 2 , , n , v ( 1 ) = c = 0 m λ c I 0 + β ( ε )   v ( η c ) .
In this context, D 0 + w ( ε ) and D 0 + γ ( ε ) represent the variable-order Riemann–Liouville fractional derivatives of orders w ( ε ) and γ ( ε ) , respectively. The expression I 0 + β ( ε ) denotes the variable-order Riemann–Liouville fractional integral of order β ( ε ) > 0 , n 1 w ( ε ) < n , n 4 , 0 < γ ( ε ) < 1 . The function B : [ 0 , 1 ] × R 2 R + is a Caratheodory function that satisfies certain assumptions. Let us now define the setting more precisely. Set
ξ = 1 Γ ( w k ) Γ ( w k + β k ) c = 0 m λ c η c k 1 + w k + β k 1 ,
with 0 < η c < 1 , λ c > 0 , c = 0 , , m , and
c = 0 m λ c Γ ( w k + β k ) Γ ( w k ) .
Then, 0 < ξ < 1 .
Here, we explore a variable-order fractional differential equation (FDE) involving the Riemann–Liouville (RL) derivative and establish conditions for the existence of solutions within subintervals. Our study highlights the crucial role of piecewise-constant functions in converting the variable-order RL fractional boundary value problem into a standard RL fractional boundary value problem.
The primary objective of this work is to analyze a mathematical problem with variable order. The desired variable-order FDE has been introduced in Section 1, while essential definitions and preliminary results are provided in Section 2. Using an iterative sequential approach and a limit point technique, we derive the existence and uniqueness criteria in Section 3. Finally, Section 4 and Section 5 present a demonstrative example and the corresponding numerical analysis, respectively, to illustrate our findings.

2. Essential Concepts and Preliminaries

This section gathers some essential concepts and preliminary results that will serve as a foundation for the analysis presented in the later sections of the paper.
Definition 1 
([31,32]). Let < a < b < + and consider a function w : [ a , b ] ( 0 , + ) . The left-sided Riemann–Liouville fractional integral of variable order w ( · ) for a function Q is defined as follows:
I a + w ( ε )   Q ( ε ) = a ε ( ε τ ) w ( τ ) 1 Γ ( w ( τ ) )   Q ( τ ) d τ , ε > a ,
where Γ ( · ) denotes the Gamma function.
Definition 2 
([31,32]). For < a < b < + , let w : [ a , b ] ( n 1 , n ) , with n N . The left-sided Riemann–Liouville fractional derivative of variable order w ( · ) for Q is given by
D a + w ( ε )   Q ( ε ) = d d ε n I a + n w ( ε )   Q ( ε ) = d d ε n a ε ( ε τ ) n w ( τ ) 1 Γ ( n w ( τ ) ) Q ( τ ) d τ , ε > a .
The following properties are derived from the existing literature:
Lemma 1 
([33]). Let γ > 0 , a 0 , Q L 1 ( a , b ) , and D a + γ Q L 1 ( a , b ) . If D a + γ Q = 0 , then
Q ( ε ) = k = 1 n c k ( ε a ) γ k ,
where n = γ and c k R for k = 1 , , n .
Lemma 2 
([33]). For γ > 0 , a 0 , Q L 1 ( a , b ) , and D a + γ   Q L 1 ( a , b ) , we have
I a + γ D a + γ Q ( ε ) = Q ( ε ) + k = 1 n d k ( ε a ) γ k ,
where n = γ and d k R for k = 1 , , n .
Lemma 3 
([33]). Let γ > 0 , a 0 , Q L 1 ( a , b ) , and D a + γ Q L 1 ( a , b ) . Then
D a + γ I a + γ   Q ( ε ) = Q ( ε ) .
Lemma 4 
([33]). For γ 1 , γ 2 > 0 , a 0 , and B L 1 ( a , b ) , the following holds:
I a + γ 1 I a + γ 2   Q ( ε ) = I a + γ 2 I a + γ 1   Q ( ε ) = I a + γ 1 + γ 2   Q ( ε ) .
Remark 1 
([34,35]). In general, for variable-order fractional operators with distinct functions γ 1 ( ε ) and γ 2 ( ε ) , the semigroup property fails to hold:
I a + γ 1 ( ε ) I a + γ 2 ( ε )   Q ( ε ) I a + γ 1 ( ε ) + γ 2 ( ε )   Q   ( ε ) .
Definition 3. 
A generalized interval I R is defined as any of the following: A standard interval (open, closed, or half-open), a singleton set { a } where a R , the empty set Ø.
This definition follows the conventions established in prior works [36].
Definition 4. 
A partition P of I is a finite collection of disjoint generalized intervals such that every element x I belongs to exactly one subset E P .
A function g : I R is called piecewise constant with respect to P if g remains constant on each subset E within the partition.
Lemma 5 
([37]). Let F be a bounded set in L p ( 0 , 1 ) , where 1 p < . Assume that
(i) 
lim | h | 0 T h Q Q p = 0 uniformly for Q F ,
(ii) 
lim ϵ 0 1 ϵ 1 | Q ( ε ) | p d ε = 0 uniformly for Q F ,
where T h Q ( ε ) = Q ( ε h ) . Then F is relatively compact in L p ( 0 , 1 ) .
In what follows, let [ a , b ] be a nonempty interval of R . Let us introduce the Sobolev Space
W 1 , 1 ( a , b ) = v L 1 ( a , b ) v L 1 ( a , b ) ,
equipped with the norm
v W 1 , 1 = v L 1 + v L 1 .
Here, v denotes the distributional derivative of v. The space of Absolutely Continuous Functions AC ( a , b ) coincides with the Sobolev Space W 1 , 1 ( a , b ) .
Definition 5 
([38]). The Riemann–Liouville fractional Sobolev Space is given by
W RL , a + s , 1 = v L 1 ( a , b ) I a + 1 s v W 1 , 1 ( a , b ) , 0 < s < 1 .
W RL , a + s , 1 is a Banach Space endowed with the norm
v W RL , a + s , 1 = v L 1 + I a + 1 s v W 1 , 1 .
In [38], Bergounioux et al. give more details on the Sobolev Space W RL , a + s , 1 .
Theorem 1 
([34]). Let Ω be a convex subset of a Banach space and N : Ω Ω be a completely continuous map. Then N has at least one fixed point in Ω.

3. Problem Setup

Let us consider n N a positive integer and { k } k = 0 n a finite sequence such that
0 = 0 < k 1 < k < n = 1 , k = 2 , , n 1 .
Denote M k : = ( k 1 , k ] , k = 1 , 2 , , n . Then, P = { k : k = 1 , 2 , , n } is a partition of [ 0 , 1 ] .
Consider a piecewise function w : M [ n 1 , n ) , with respect to P , given by
w ( s ) = k = 1 n w k I k ( s ) = w 1 , if s M 1 , w 2 , if s M 2 , w n , if s M n ,
with
I k ( s ) : = 1 , if s M k , 0 , otherwise ,
where n 1 w k n are positive constants and I k are indicators of M k , for k = 1 , 2 , , n .
Then, for any s M k , k = 1 , 2 , , n , the left Riemann–Liouville fractional-order operator of variable order w ( · ) for v C ( M , R ) could be the sum of left Riemann–Liouville fractional-order derivatives of w k , k = 1 , 2 , , n , orders
D 0 + w ( s ) v ( s ) = d d s 0 1 ( s z ) w 1 Γ ( 1 w 1 ) v ( z ) d z + + k 1 s ( s z ) w k Γ ( 1 w k ) v ( z ) d z .
Thus, according to (5), the equation of the R-fractional Equation (2) can be written for any s k , k = 1 , 2 , , n , as
d d s 0 1 ( s z ) w 1 Γ ( 1 w 1 ) v ( z ) d z + + k 1 s ( s z ) w k Γ ( 1 w k ) v ( z ) d z = B s , v ( s ) , D 0 + γ k v ( s ) .
To solve the integral Equation (6), let v ˜ : M k R be a continuous function such that v ˜ ( ε ) 0 on ε [ 0 , k 1 ] . Then (6) is transformed into
D k 1 + w k v ˜ ( s ) + B s , v ˜ ( s ) , D k 1 + γ k v ˜ ( s ) = 0 , s M k .
We shall deal with the following BVP:
D k 1 + w k v ( ε ) + B ε , v ( ε ) , D k 1 + γ k v ( ε ) = 0 , k 1 < ε < 1 , lim ε k 1 + ε i w k v ( ε ) = 0 , i = 2 , , n , v ( 1 ) = c = 0 m λ c I k 1 + β k v ( η c ) .
Lemma 6. 
Assume that h C ( 0 , 1 ) L 1 ( 0 , 1 ) and n 1 < w ( ε ) n , n 4 , then the unique solution of the BVP (7) is given by
v ( ε ) = k 1 1 G ( ε , s ) B s , u ( s ) , D k 1 γ k v ( ε ) d s + ε w k 1 ξ c = 0 m λ c k 1 1 H ( η c , s ) B s , v ( s ) , D k 1 γ k v ( ε ) d s ,
where
G ( ε , s ) = 1 Γ ( w k ) ε w k 1 ( 1 s ) w k 1 ( ε s ) w k 1 , k 1 s ε 1 , ε w k 1 ( 1 s ) w k 1 , k 1 ε s 1 ,
and
H ( ε , s ) = Γ ( w k ) Γ ( β k ) Γ ( w k + β k ) 1 Γ ( w k ) Γ ( β k ) ε k 1 w k + β k 1 ( 1 s ) w k 1 ( ε s ) w k + β k 1 , k 1 s ε 1 , ε k 1 w k + β k 1 ( 1 s ) w k 1 , k 1 ε s 1 .
Proof. 
Let v be a solution of the problem (7). Then, we have
v ( ε ) = c 1 ε w k 1 + c 2 ε w k 2 + c 3 ε w k 3 + + c n ε w k n 1 Γ ( w k ) k 1 + ε ( ε s ) w k 1 B s , v ( s ) , D k 1 + γ k v ( ε ) d s .
Taking into consideration conditions (7), it yields
c 2 = c 3 = = c n = 0 ,
and
c 1 = 1 ξ 1 Γ ( w k ) k 1 1 ( 1 s ) w k 1 B s , v ( s ) , D k 1 + γ k v ( ε ) d s Γ ( w k ) Γ ( β k ) Γ ( w k + β k ) η = 0 m λ c k 1 η c ( η c s ) w k + β k 1 B s , v ( s ) , D k 1 + γ k v ( ε ) d s .
Hence, the solution of problem (7) is
v ( ε ) = 1 Γ ( w k ) k 1 ε ( ε s ) w k 1 B s , v ( s ) , D k 1 + γ k v ( ε ) d s + ε w k 1 ξ 1 Γ ( w k ) k 1 1 ( 1 s ) w k 1 B s , v ( s ) , D k 1 + γ k v ( ε ) d s Γ ( w k ) Γ ( β k ) Γ ( w k + β k ) c = 0 m λ c k 1 η c ( η c s ) w k + β k 1 B s , v ( s ) , D k 1 + γ k v ( ε ) d s .
Now, by some calculations and the fact that
ξ = 1 Γ ( w k ) Γ ( w k + β k ) c = 0 m λ c η c k 1 w k + β k 1 .
We can rewrite the second term in (8) as
ε w k 1 Γ ( w k ) ξ k 1 1 ( 1 s ) w k 1 B s , v ( s ) , D k 1 + γ k v ( ε ) d s = ε w k 1 Γ ( w k ) k 1 1 ( 1 s ) w k 1 B s , v ( s ) , D k 1 + γ k v ( ε ) d s + ε w k 1 Γ ( w k + β k ) ξ c = 0 m λ c η c k 1 w k + β k 1 k 1 1 ( 1 s ) w k 1 B s , v ( s ) , D k 1 + γ k v ( ε ) d s = ε w k 1 Γ ( w k ) k 1 ε ( 1 s ) w k 1 B s , v ( s ) , D k 1 + γ k v ( ε ) d s + ε w k 1 Γ ( w k ) ε 1 ( 1 s ) w k 1 B s , v ( s ) , D k 1 + γ k v ( ε ) d s + ε w k 1 Γ ( w k + β k ) ξ = 0 m λ c η c k 1 w k + β k 1 k 1 η c ( 1 s ) w k 1 B s , v ( s ) , D k 1 + γ k v ( ε ) d s + ε w k 1 Γ ( w k + β k ) ξ c = 0 m λ c η c k 1 w k + β k 1 η c 1 ( 1 s ) w k 1 B s , v ( s ) , D k 1 + γ k v ( ε ) d s .
Thus, (8) becomes the following:
v ( ε ) = 1 Γ ( w k ) k 1 ε ε w k 1 ( 1 s ) w k 1 ( ε s ) w k 1 B s , v ( s ) , D k 1 γ k v ( ε ) d s + 1 Γ ( w k ) ε 1 ε w k 1 ( 1 s ) w k 1 B s , v ( s ) , D k 1 γ k v ( ε ) d s + Γ ( w k ) Γ ( β k ) ε w k 1 Γ ( w k + β k ) ξ × c = 0 m λ c k 1 η c 1 Γ ( w k ) Γ ( β k ) ( η c k 1 ) ω k + β k 1 ( 1 s ) w k 1 ( η c s ) w k + β k 1 h ( s ) d s + ε w k 1 Γ ( w k + β k ) ξ c = 0 m λ c η c 1 ( η c k 1 ) w k + β k 1 ( 1 s ) w k 1 B s , v ( s ) , D k 1 γ k v ( ε ) d s .
The proof is complete. □
Lemma 7. 
The functions G and H are continuous, nonnegative, and satisfy
G ( ε , s ) 1 Γ ( w k ) , H ( ε , s ) Γ ( w k ) Γ ( β k ) Γ ( w k + β k ) , k 1 ε , s 1 .
Let a , c R + , b , d R , and define the upper and lower control functions U ( ε , u , v ) : [ k 1 , 1 ] × [ a , ) × [ b , ) R + and L ( ε , u , v ) : [ k 1 , 1 ] × ( , c ] × ( , d ] R + , respectively, by
U ( ε , u , v ) = sup { B ( ε , λ , μ ) : a λ u , b μ v } , L ( ε , u , v ) = inf { B ( ε , λ , μ ) : u λ c , v μ d } .
We have L ( ε , u , v ) B ( ε , u , v ) U ( ε , u , v ) , for k 1 ε 1 , a u c , b v d .
Set the cone
K = v W R L , k 1 + 1 γ , 1 : v ( ε ) 0 , k 1 ε 1 .
Note that the norm in the space W R L , k 1 + 1 γ , 1 is
v W R L , k 1 + 1 γ , 1 = v L 1 + I k 1 + 1 γ k v L 1 + D k 1 + γ k v L 1 .
Let us consider the following hypotheses:
Hypothesis 1 
(H1). There exist v * , v * K , such that a v * ( ε ) v * ( ε ) c , b D k 1 + γ k v * ( ε ) D k 1 + γ k v * ( ε ) d , and:
v * ( ε ) k 1 1 G ( ε , s ) U s , v * ( s ) , D k 1 + γ v * ( s ) d s + ε w k 1 ξ c = 0 m λ c k 1 + 1 H ( η k , s ) U s , v * ( s ) , D k 1 + γ k v * ( s ) d s , v * ( t ) k 1 1 G ( ε , s ) L s , v * ( s ) , D k 1 + γ k v * ( s ) d s + ε w k 1 ξ c = 0 m λ c k 1 1 H ( η k , s ) L s , v * ( s ) , D k 1 + γ k v * ( s ) d s ,
and
D k 1 + γ k v * ( ε ) 1 Γ ( w k γ k ) k 1 ε ( ε s ) w k γ k 1 L s , v * ( s ) , D k 1 + γ k v * ( s ) d s + ε w k γ k 1 ξ Γ ( w k γ k ) [ 0 1 ( 1 s ) w k 1 U s , v * ( s ) , D k 1 + γ k v * ( s ) d s Γ ( w k ) Γ ( β k ) Γ ( w k + β k ) c = 0 m λ c k 1 η c ( η c s ) w k + β k 1 L s , v * ( s ) , D k 1 + γ k v * ( s ) d s ] , D k 1 + γ k v * ( ε ) 1 Γ ( w k γ k ) k 1 ε ( ε s ) w k γ k 1 U s , v * ( s ) , D k 1 + γ k v * ( s ) d s + ε w k γ k 1 ξ Γ ( w k γ k ) [ k 1 1 ( 1 s ) w k 1 L s , v * ( s ) , D k 1 + γ k v * ( s ) d s Γ ( w k ) Γ ( β k ) Γ ( w k + β k ) c = 0 m λ c k 1 η c ( η c s ) w k + β k 1 U s , v * ( s ) , D k 1 + γ k v * ( s ) d s ] .
Hypothesis 2 
(H2). There exists a nonnegative function g L 1 [ k 1 , 1 ] , two constants C 0 and R > 0 such that
B ( ε , u , v ) g ( ε ) + C ( | u | + | v | ) , k 1 ε 1 , u , v R ,
and
g L 1 + C R 1 + ξ + Γ ( w k ) Γ ( β k ) Γ ( w k γ k ) + ξ + Γ ( w k ) Γ ( β k ) 1 + Γ ( 2 γ k ) Γ ( w k ) Γ ( 2 γ k ) R .
Theorem 2. 
Assume that hypotheses ( H 1 ) and ( H 2 ) hold. Then the boundary value problem (7) has at least one positive solution in W R L , k 1 + 1 γ k , 1 such that v * ( ε ) v ( ε ) v * ( ε ) and D k 1 + γ k v * ( ε ) D k 1 + γ k v ( ε ) D k 1 + γ k v * ( ε ) , for all ε [ k 1 , 1 ] .
Proof. 
Denote by D R the set
D R : = u K , v W R L , k 1 + 1 γ k , 1 R , v * ( ε ) v ( ε ) v * ( ε ) , D k 1 + γ k v * ( ε ) D k 1 + γ k v ( ε ) D k 1 + γ k v * ( ε ) , k 1 ε 1 .
It is clear that D R is a bounded, closed and convex subset of W R L , k 1 + 1 γ k , 1 . Define the operator H : D R W R L , k 1 + 1 γ k , 1 by
H u ( ε ) = k 1 1 G ( ε , s ) B s , v ( s ) , D k 1 + γ k v ( s ) d s + ε w k 1 ξ c = 0 m λ c k 1 1 H ( η c , s ) B s , v ( s ) , D k 1 + γ k v ( s ) d s .
We show that H satisfies the assumptions of Schauder’s fixed point theorem. The proof will be done in some steps.
Claim 1: 
The operator H is continuous in W R L , k 1 + 1 γ k , 1 .
Let ( v n ) be a sequence such that v n v in W R L , k 1 + 1 γ k , 1 . Taking Lemma 7 and condition c = 0 m λ c Γ ( w k + β k ) Γ ( w k ) into account, we obtain
| H v n ( ε ) H v ( ε ) | k 1 1 G ( ε , s ) B s , v n ( s ) , D k 1 + γ k v n ( s ) B s , v ( s ) , D k 1 + γ k v ( s ) d s + ε w k 1 ξ c = 0 m λ c k 1 1 H ( η c , s ) × B s , v n ( s ) , D k 1 + γ k v n ( s ) B s , v ( s ) , D k 1 + γ k v ( s ) d s ξ + Γ ( w k ) Γ ( β k ) Γ ( w k ) × B · , v n ( · ) , D k 1 + γ k v n ( · ) B · , v ( · ) , D k 1 + γ k v ( · ) L 1 .
Consequently,
H v n H v L 1 ξ + Γ ( w k ) Γ ( β k ) Γ ( w k ) × B · , v n ( · ) , D k 1 + γ k v n ( · ) B · , v ( · ) , D k 1 + γ k v ( · ) L 1 .
Similarly, we obtain
I k 1 + γ k H v n ( ε ) I k 1 + γ k H v ( ε ) 1 Γ ( 1 γ k ) k 1 ε ( ε s ) γ k | H v n ( s ) H v ( s ) | d s
ξ + Γ ( w k ) Γ ( β k ) Γ ( w k ) Γ ( 2 γ k ) × B · , v n ( · ) , D k 1 + γ k v n ( · ) B · , v ( · ) , D k 1 + γ k v ( · ) L 1 ,
hence
I k 1 + γ k H v n I k 1 + γ k H v L 1 ξ + Γ ( w k ) Γ ( β k ) Γ ( w k ) Γ ( 2 γ k ) × B · , v n ( · ) , D k 1 + γ k v n ( · ) B · , v ( · ) , D k 1 + γ k v ( · ) L 1 .
From (8), H v can be written as
H v ( ε ) = I w k B ε , v ( ε ) , D k 1 + γ k v ( ε ) + ε w k 1 L v ,
where
L v = 1 ξ Γ ( w k ) k 1 1 ( 1 s ) w k 1 B s , v ( s ) , D k 1 + γ k v ( s ) d s Γ ( w k ) Γ ( β k ) ξ Γ ( w k + β k ) c = 0 m λ c k 1 η c ( η c s ) w k + β k 1 B s , v ( s ) , D k 1 + γ k v ( s ) d s .
Then, by hypothesis (H2) and condition c = 0 m λ c Γ ( w k + β k ) Γ ( w k ) , the following estimate holds
| L v | 1 ξ Γ ( w k ) + Γ ( w k ) Γ ( β k ) ξ Γ ( w k + β k ) c = 0 m λ c k 1 1 g ( s ) + C | v ( s ) | + D k 1 + γ k v ( s ) d s 1 + Γ ( w k ) Γ ( β k ) ξ Γ ( w k ) g L 1 + C R .
Thus,
D k 1 + γ k H v n ( ε ) D k 1 + γ k H v ( ε ) = I k 1 + w k γ k B ε , v n ( ε ) , D k 1 + γ k v n ( ε ) I k 1 + w k γ k B ε , v ( ε ) , D k 1 + γ k v ( ε ) + Γ ( w k ) Γ ( w k γ k ) ε w k γ k 1 ( L v n H v ) 1 Γ ( w k γ k ) k 1 1 ( 1 s ) w k γ k 1 × B s , v n ( s ) , D k 1 + γ k v n ( s ) B s , v ( s ) , D k 1 + γ k v ( s ) d s + Γ ( w k ) Γ ( w k γ k ) ε w k γ k 1 [ 1 ξ Γ ( w k ) k 1 1 ( 1 s ) w k 1 × B s , v n ( s ) , B k 1 + γ k v n ( s ) B s , v n ( s ) , D k 1 + γ k v n ( s ) d s + Γ ( w k ) Γ ( β k ) ξ Γ ( w k + β k ) c = 0 m λ c k 1 η c ( η c s ) w k + β k 1 × B s , v n ( s ) , D k 1 + γ k v n ( s ) B s , v ( s ) , D k 1 + γ k v ( s ) d s ] 1 + ξ + Γ ( w k ) Γ ( β k ) Γ ( w k γ k ) B s , v n ( s ) , D k 1 + γ k v n ( s ) B s , v ( s ) , D k 1 + γ k v ( s ) L 1 .
Consequently, we obtain
D k 1 + γ k H v n ( ε ) D k 1 + γ k H v ( ε ) L 1 1 + ξ + Γ ( w k ) Γ ( β k ) Γ ( α k γ k ) × B · , v n ( · ) , D k 1 + γ k v n ( · ) B · , v ( · ) , D k 1 + γ k v ( · ) L 1 .
Thanks to inequalities (9)–(11), the operator H is continuous in W R L , k 1 + 1 γ k , 1 .
Claim 2: 
H ( D R ) D R . Let u D R . Lemma 7 implies,
H v L 1 ξ + Γ ( w k ) Γ ( β k ) Γ ( w k ) g L 1 + C R .
Similarly, we obtain
I k 1 + 1 γ k H v L 1 ξ + Γ ( w k ) Γ ( β k ) Γ ( w k ) Γ ( 2 γ k ) g L 1 + C R ,
and
D k 1 + γ k H v L 1 1 + ξ + Γ ( w k ) Γ ( β k ) Γ ( w k γ k ) g L 1 + C R .
Taking (9) and (12)–(14) into account, we obtain H v W R L , k 1 + 1 γ k , 1 R . Now, since v D R , we obtain v * ( ε ) v ( ε ) v * ( ε ) . By the hypothesis (H1) and the concept of upper and lower control functions, we have
H v ( ε ) k 1 1 G ( ε , s ) U s , v ( s ) , D k 1 + γ k v ( s ) d s + ε w k 1 ξ c = 0 m λ c k 1 1 H ( η c , s ) U s , v ( s ) , D k 1 + γ k v ( s ) d s k 1 1 G ( ε , s ) U s , v * ( s ) , D k 1 + γ k v * ( s ) d s + ε w k 1 ξ c = 0 m λ c k 1 1 H ( η c , s ) U s , v * ( s ) , D k 1 + γ k v * ( s ) d s v * ( ε ) .
Similarly, we prove that H v ( ε ) v * ( ε ) . Thus, v * ( ε ) H v ( ε ) v * ( ε ) , for all v D R .
Now, with the help of (8), we see that H v ( ε ) can be written as
D k 1 + γ k H v ( ε ) = 1 Γ ( w k γ k ) k 1 ε ( ε s ) w k γ k 1 B s , v ( s ) , D k 1 + γ k v ( s ) d s + ε w k γ k 1 ξ Γ ( w k γ k ) k 1 1 ( 1 s ) w k 1 B s , v ( s ) , D k 1 + γ k v ( s ) d s Γ ( w k ) Γ ( β k ) Γ ( w k + β k ) c = 0 m λ c k 1 η c ( η c s ) w k + β k 1 B s , v ( s ) , D k 1 + γ k v ( s ) d s .
So,
D k 1 + γ k H v ( ε ) 1 Γ ( w k γ k ) k 1 ε ( ε s ) w k γ k 1 L s , v ( s ) , D k 1 + γ k v ( s ) d s + ε w k γ k 1 ξ Γ ( w k γ k ) k 1 1 ( 1 s ) w k 1 U s , v ( s ) , D k 1 + γ k v ( s ) d s Γ ( w k ) Γ ( β k ) Γ ( w k + β k ) c = 0 m λ c k 1 η c ( η c s ) α k + β k 1 L s , v ( s ) , D k 1 + γ k v ( s ) d s 1 Γ ( w k γ k ) k 1 ε ( ε s ) w k γ k 1 L s , v * ( s ) , D k 1 + γ k v * ( s ) d s + ε w k γ k 1 ξ Γ ( w k γ k ) k 1 1 ( 1 s ) w k 1 U s , v * ( s ) , D k 1 + γ k v * ( s ) d s Γ ( w k ) Γ ( β k ) Γ ( w k + β k ) c = 0 m λ c k 1 η c ( η c s ) w k + β k 1 L s , v * ( s ) , D k 1 + γ k v * ( s ) d s ] D k 1 + γ k v * ( ε ) .
Similarly, we prove that D k 1 + γ H v ( ε ) D k 1 + γ v * ( ε ) and, then, H ( D R ) D R .
Claim 3: 
H ( D R ) is relatively compact in W R L , k 1 + 1 γ k , 1 . To this end, we show that the two statements of Lemma 5 hold. Let v D R . In fact,
| H v ( ε + h ) H v ( ε ) | k 1 1 | G ( ε + h , s ) G ( ε , s ) | B s , v ( s ) , D k 1 + γ k v ( s ) d s + ( ε + h ) w k 1 ε w k 1 ξ c = 0 m λ c k 1 1 H ( η c , s ) B s , v ( s ) , D k 1 + γ k v ( s ) d s 1 Γ ( w k ) [ ( ε + h ) w k 1 ε w k 1 k 1 1 ( 1 s ) w k 1 B s , v ( s ) , D k 1 + γ k v ( s ) d s + k 1 ε ( ε + h s ) w k 1 ( ε s ) w k 1 B s , v ( s ) , D k 1 + γ k v ( s ) d s + ε ε + h ( ε + h s ) w k 1 B s , v ( s ) , D k 1 + γ k v ( s ) d s ] + Γ ( β k ) ( ε + h ) w k 1 ε w k 1 ξ k 1 1 B s , v ( s ) , D k 1 + γ k v ( s ) d s ( 2 w k 1 ) h Γ ( w k ) + Γ ( β k ) ( w k 1 ) h ξ g L 1 + C R ,
which goes to 0 as h 0 . By virtue of (12), it yields
I k 1 + 1 γ k   H v ( ε + h ) I k 1 + 1 γ k   H v ( ε ) 1 Γ ( 1 γ k ) [ k 1 ε ( ε s ) γ k ( ε + h s ) γ k | H v ( s ) | d s + ε ε + h ( ε + h s ) γ k | H v ( s ) | d s ]
ξ + Γ ( w k ) Γ ( β k ) ( ε + h ) 1 γ k ε 1 γ k + 2 h 1 γ k Γ ( w k ) Γ ( 2 γ k ) g L 1 + C R ,
which tends to 0 as h 0 . Moreover, we have
D k 1 + γ k H v ( ε + h ) D k 1 + γ k H v ( ε ) = I k 1 + w k γ k B ε + h , v ( ε + h ) , D k 1 + γ k v ( ε + h ) I k 1 + w k γ k B ε , v ( ε ) , D k 1 + γ k v ( ε ) + Γ ( w k ) Γ ( w k γ k ) ( ε + h ) w k γ k 1 ε w k γ k 1 H v g L 1 + C R Γ ( w k γ k ) 1 + Γ ( w k ) Γ ( β k ) ( w k γ k 2 ) h ξ + ( w k γ k 2 ) h + h w k γ k 1 ,
which tends to 0 as h 0 . From (15), (16) and (18), we obtain that
T h H v H v W R L , k 1 + 1 γ k , 1 0 as h 0 ,
for any v D R and, then, the first statement of Lemma 5 is proved. Now, let us show the second statement of Lemma 5. By the help of (12)–(14), it yields
1 ϵ 1 | H v ( ε ) | d ε + 1 ϵ 1 I k 1 + 1 γ k H v ( ε ) d ε + 1 ϵ 1 D k 1 + γ k H v ( ε ) d ε ϵ g L 1 + C R × 1 + ξ + Γ ( w k ) Γ ( β k ) Γ ( w k γ k ) + ξ + Γ ( w k ) Γ ( β k ) 1 + Γ ( 2 γ k ) Γ ( w k ) Γ ( 2 γ k ) ,
which tends to 0 , uniformly on D R and, since all the hypotheses of Lemma 5 are satisfied, then H is relatively compact on D R . By Schauder’s fixed point theorem, H has a fixed point v D R , which is a positive solution of the problem (7). The proof is now completed. □
Corollary 1. 
Assume that there exist two positive constants l and L such that
sup { B ( ε , x , y ) : k 1 ε 1 , x 0 , y R } L , inf { B ( ε , x , y ) : k 1 ε 1 , x 0 , y R } l ,
and
l L ξ + Γ ( w k + 1 ) Γ ( w k + β k + 1 ) c = 0 m λ c η c w k + β k .
Then, the problem (7) has at least one positive solution v W R L , k 1 + 1 γ k , 1 .
Proof. 
We begin by proving that hypotheses (H1) and (H2) hold. Given the notions of L ( ε , u , v ) and U ( ε , u , v ) , we obtain
l L ( ε , u , v ) U ( ε , u , v ) L , k 1 + < ε < 1 , x 0 , y R .
Set
v * ( ε ) = l ( ε k 1 ) w k Γ ( w k + 1 ) + L ( ε k 1 ) w k 1 Γ ( w k + 1 ) ξ l ( ε k 1 ) w k 1 Γ ( w k + β k + 1 ) ξ c = 0 m λ c ( η c k 1 ) w k + β k , v * ( ε ) = L ( ε k 1 ) w k Γ ( w k + 1 ) + l ( ε k 1 ) w k 1 Γ ( w k + 1 ) ξ L ( ε k 1 ) w k 1 Γ ( w k + β k + 1 ) ξ c = 0 m λ c ( η c k 1 ) w k + β k ,
then
0 v * ( ε ) v * ( ε ) ,
v * ( ε ) L k 1 + 1 G ( ε , s ) d s + ε w k 1 ξ c = 0 m λ c k 1 1 H ( η c , s ) d s k 1 1 G ( ε , s ) U s , v * ( s ) , D k 1 + γ k v * ( s ) d s + ε w k 1 ξ c = 0 m λ c k 1 1 H ( η c , s ) U s , v * ( s ) , D k 1 + γ k v * ( s ) d s ,
and
v * ( ε ) k 1 1 G ( ε , s ) L s , v * ( s ) , D k 1 + γ k v * ( s ) d s + ε w k 1 ξ c = 0 m λ c k 1 1 H ( η c , s ) L s , u * ( s ) , D k 1 + γ k v * ( s ) d s .
Furthermore, computation gives
D k 1 + γ k v * ( ε ) = l ( ε k 1 ) w k γ k Γ ( w k γ k + 1 ) + L ( ε k 1 ) w k γ k 1 w k Γ ( w k γ k ) ξ l Γ ( w k ) Γ ( β k ) ( ε k 1 ) w k γ k 1 ξ Γ ( w k γ k ) Γ ( w k + β k + 1 ) c = 0 m λ c ( η c k 1 ) w k + β k .
The third inequality in hypothesis (H1) holds, in fact,
1 Γ ( w k γ k ) k 1   ε ( ε s ) w k γ k 1 L s , v * ( s ) , D k 1 + γ k v * ( s )   d s + ε w k γ k 1 ξ Γ ( w k γ k ) k 1 1 ( 1 s ) w k 1 U s , v * ( s ) , D k 1 + γ k v * ( s )   d s Γ ( w k ) Γ ( β k ) Γ ( w k + β k ) c = 0 m λ c k 1 η c ( η c s ) w k + β k 1 L s , v * ( s ) , D k 1 + γ k v * ( s ) d s l ( ε k 1 ) w k γ k Γ ( w k γ k + 1 ) + ( ε k 1 ) w k γ k 1 ξ Γ ( w k γ k ) k 1 1 L ( 1 s ) w k 1 d s l Γ ( w k ) Γ ( β k ) Γ ( w k + β k + 1 ) c = 0 m λ c ( η c k 1 ) w k + β k d s = D k 1 + γ k v * ( ε ) .
Similarly, we prove that the fourth inequality in hypothesis (H1) is satisfied:
D k 1 + γ k v * ( ε ) 1 Γ ( w k γ k ) k 1 ε ( ε s ) k γ k 1 U s , v * ( s ) , D k 1 + γ k v * ( s ) d s + ( ε k 1 ) w k γ k 1 ξ Γ ( w k γ k ) k 1 1 ( 1 s ) w k 1 L s , v * ( s ) , D k 1 + γ k v * ( s ) d s Γ ( w k ) Γ ( β k ) Γ ( w k + β k ) c = 0 m λ c k 1 η c ( η c s ) w k + β k 1 U s , v * ( s ) , D k 1 + γ k v * ( s ) d s .
Finally, choosing R such that
R L 1 + ξ + Γ ( w k ) Γ ( β k ) Γ ( w k γ k ) + ξ + Γ ( w k ) Γ ( β k ) 1 + Γ ( 2 γ k ) Γ ( w k ) Γ ( 2 γ k ) ,
all the hypotheses in Theorem 2 are satisfied, hence the problem (7) has at least one positive solution v D R such that v * ( ε ) v ( ε ) v * ( ε ) , and D k 1 + γ k v * ( ε ) D k 1 + γ k v ( ε ) D k 1 + γ k v * ( ε ) , for all ε [ k 1 , 1 ] . The proof is achieved. □
Theorem 3. 
Assume that conditions (H1), (H2), and Equation (7) are fulfilled for all k { 1 , 2 , , n } . Then, Equation (7) has a solution v W R L , k 1 + 1 γ k , 1 .
Proof. 
By Theorem (2), Equation (7) admits at least one solution u W R L , k 1 + 1 γ k , 1 . We define the solution function, for each k { 1 , 2 , , n } , as
v ( ε ) = 0 , ε [ 0 , k 1 ] , v k , ε M k .
Then, the function
v ( ε ) = v 1 ( ε ) , ε M 1 , v 2 ( ε ) , ε M 2 , v n ( ε ) , ε M n
is a solution of the given nonlinear BVP of RLFDEVO (7) in W R L , k 1 + 1 γ k , 1 . □

4. Example

Let M : = [ 4 , 5 ] . Consider the nonlinear variable-order BVP of RLFDE with
w ( ε ) = 17 4 , M 1 : = [ 4 ; 4.5 ] , 19 4 , M 2 : = [ 4.5 ; 5 ] , B ε , v ( ε ) , D k 1 + γ k v ( ε ) = l + ( L l ) ε , ε M 1 , M 2 , λ 1 = 0.5 , λ 2 = 0.25 , η 1 = 0.25 , η 2 = 0.5 , m = 1 , γ 1 = γ 2 = 0.75 , β 1 = β 2 = 0.25 , 0 = 1 = 0 .
Using (19), we consider two auxiliary constant-order BVPs of RLFDEs:
D 0 + 17 4 v ( ε ) + B ε , v ( ε ) , D 0 + 3 4   v ( ε ) = 0 , 0 < ε < 1 , lim ε 0 + ε i 17 4 v ( ε ) = 0 , i = 2 , , n , v ( 1 ) = c = 0 m λ c I 0 1 4 v ( η c ) ,
and
D 1 19 4 v ( ε ) + B ε , v ( ε ) , D 1 3 4 v ( ε ) = 0 , 1 < ε < 1 , lim ε 1 ε i 19 4 v ( ε ) = 0 , i = 2 , , n , v ( 1 ) = c = 0 m λ c I 1 1 4 v ( η c ) .
We take the following conditions:
ξ = 1 Γ ( w 1 ) Γ ( w 1 + β 1 ) c = 0 m λ c η c 0 + w 1 + β 1 1 = 0.99204 , w 1 ( ε ) M 1 , λ 1 + λ 2 Γ ( w 1 + β 1 ) Γ ( w 1 ) = 1.4039 , ξ + Γ ( w 1 + 1 ) Γ ( w 1 + β 1 + 1 ) c = 0 m λ c η c w 1 + β 1 = 0.996974 l L , l B ( ε , x , y ) L , L = 1 ,
ξ = 1 Γ ( w 2 ) Γ ( w 2 + β 2 ) c = 0 m λ c η c 1 + w 2 + β 2 1 = 0.90622 , w 2 ( ε ) M 2 , λ 1 + λ 2 Γ ( w 2 + β 2 ) Γ ( w 2 ) = 2.7567 , ξ + Γ ( w 2 + 1 ) Γ ( w 2 + β 2 + 1 ) c = 0 m λ c η c w 2 + β 2 = 0.976501 l L , l B ( ε , x , y ) L , L = 1 .
The solutions are given by the following. For k { 1 , 2 } ,
v * ( ε ) = l ( ε k 1 ) w k Γ ( w k + 1 ) + L ( ε k 1 ) w k 1 ξ Γ ( w k + 1 ) l ( ε k 1 ) w k 1 ξ Γ ( w k + β k + 1 ) c = 0 m λ c ( η c k 1 ) w k + β k , v * ( ε ) = L ( ε k 1 ) w k Γ ( w k + 1 ) + l ( ε k 1 ) k 1 w ξ Γ ( w k + 1 ) L ( ε k 1 ) w k 1 ξ Γ ( w k + β k + 1 ) c = 0 m λ c ( η c k 1 ) w k + β k .
The exact solution is given by
v ( ε ) = l ( ε k 1 ) w k Γ ( w k + 1 ) ( L l ) ( ε k 1 ) w k + 1 Γ ( w k + 2 ) + l ( ε k 1 ) w k 1 Γ ( w k + 1 ) ξ + ( L l ) ( ε k 1 ) w k 1 Γ ( w k + 2 ) ξ l ( ε k 1 ) w k 1 Γ ( w k + β k + 1 ) c = 0 m λ c ( η c k 1 ) w k + β k ( L l ) ( ε k 1 ) w k 1 Γ ( w k + β k + 2 ) c = 0 m λ c ( η c k 1 ) w k + β k + 1 .
By computations, we obtain
v * ( ε ) = 0.015997742619 ( ε k 1 ) 3.25 0.01601 ( ε k 1 ) 4.25 , v * ( ε ) = 0.0159977426 ( ε k 1 ) 3.5 1.9105 × 10 1 ( ε k 1 ) 4.5 , v ( ε ) = 0.012373 ( ε k 1 ) 3.25 + 0.01239973 ( ε k 1 ) 4.25 0.000039113 ( ε k 1 ) 5.5 .
In addition, we have
D k 1 + γ v * ( ε ) = 10 2 ( ε k 1 ) 3 ( 3.6014 4.00198 ( ε k 1 ) ) , D k 1 + γ v * ( ε ) = 10 2 ( ε k 1 ) 3 ( 3.00387 3.85667 ( ε k 1 ) ) , D k 1 + γ v ( ε ) = 9.3834 × 10 6 ( ε k 1 ) 5 4.1198 × 10 3 ( ε k 1 ) 4 + 3.7117 × 10 2 ( ε k 1 ) 3 .
Hence, from Corollary 1, we conclude that the problem has at least one positive solution u W 1 , 1 such that 0 v * ( ε ) v ( ε ) v * ( ε ) , and D + γ v * ( ε ) D + γ v ( ε ) D + γ v * ( ε ) .

5. Numerical Analysis

In this section, we took 100 points for α ( t ) = 5 t . See Figure 1, Figure 2 and Figure 3.

6. Conclusions

This study demonstrates the existence of solutions for variable-order Riemann–Liouville (RL) fractional differential equations under multipoint boundary conditions. By employing a piecewise constant approximation technique, we transform the problem into an equivalent system of constant-order fractional differential equations (FDEs), which allows for both analytical and numerical analysis. The existence of solutions is rigorously proven using Schauder’s fixed point theorem under suitable mathematical conditions.
These findings open up new research opportunities, particularly for extensions involving ψ -Caputo derivatives.

Author Contributions

Conceptualization, Z.B., K.M., N.B. and R.R.-L.; methodology, Z.B., K.M., N.B. and R.R.-L.; formal analysis, Z.B., K.M., N.B. and R.R.-L.; investigation, Z.B., K.M., N.B. and R.R.-L.; writing—original draft preparation, Z.B., K.M., N.B. and R.R.-L.; writing—review and editing, Z.B., K.M., N.B. and R.R.-L. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding author(s).

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Ozarslan, R.; Bas, E.; Baleanu, D.; Acay, B. Fractional physical problems including wind-influenced projectile motion with Mittag-Leffler kernel. AIMS Math. 2020, 5, 467–481. [Google Scholar] [CrossRef]
  2. Singh, J.; Kumar, D.; Baleanu, D. On the analysis of chemical kinetics system pertaining to a fractional derivative with Mittag-Leffler type kernel. Chaos 2017, 27, 103113. [Google Scholar] [CrossRef] [PubMed]
  3. Prajapati, J.C.; Patel, A.D.; Pathak, K.N.; Shukla, A.K. Fractional calculus approach in the study of instability phenomenon in fluid dynamics. Palest. J. Math. 2012, 1, 95–103. [Google Scholar]
  4. Giusti, A. On infinite order differential operators in fractional viscoelasticity. Fract. Calc. Appl. Anal. 2017, 20, 854–867. [Google Scholar] [CrossRef]
  5. Oldham, K.B. Fractional differential equations in electrochemistry. Adv. Eng. Softw. 2010, 41, 9–12. [Google Scholar] [CrossRef]
  6. Alotta, G.; Di Paola, M.; Pinnola, F.P. An unified formulation of strong non-local elasticity with fractional order calculus. Commun. Nonlinear Sci. Numer. Simul. 2022, 57, 793–805. [Google Scholar] [CrossRef]
  7. Uchaikin, V.V. Fractional Derivatives for Physicists and Engineers; Springer: Berlín, Germany, 2013. [Google Scholar]
  8. Rehman, Z.U.; Boulaaras, S.; Jan, R.; Ahmad, I.; Bahramand, S. Computational analysis of financial system through non-integer derivative. J. Comput. Sci. 2024, 75, 102204. [Google Scholar] [CrossRef]
  9. Traore, A.; Sene, N. Model of economic growth in the context of fractional derivative. Alex. Eng. J. 2024, 59, 4843–4850. [Google Scholar] [CrossRef]
  10. Ionescu, C.; Lopes, A.; Copot, D.; Machado, J.T.; Bates, J.H. The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 2017, 51, 141–159. [Google Scholar] [CrossRef]
  11. Shiria, B.; Baleanu, D. Numerical solution of some fractional dynamical systems in medicine involving non-singular kernel with vector order. Results Nonlinear Anal. 2019, 2, 160–168. [Google Scholar]
  12. Yang, X.; Zeng, J.; Xu, C.; Peng, L.; Alsultan, J. Modeling of fractional differential equation in cloud computing image fusion algorithm. Appl. Math. Nonlinear Sci. 2023, 8, 1125–1134. [Google Scholar] [CrossRef]
  13. Dhayal, R.; Malik, M.; Abbas, S. Nonlinear heat conduction equations with memory: Physical meaning and analytical results. J. Math. Phys. 2017, 58, 063501. [Google Scholar] [CrossRef]
  14. Dhayal, R.; Malik, M.; Abbas, S. Solvability and optimal controls of noninstantaneous impulsive stochastic fractional differential equation of order q∈(1,2). Stochastics 2021, 93, 780–802. [Google Scholar] [CrossRef]
  15. Gupta, C.P. Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation. J. Math. Anal. Appl. 1992, 168, 540–551. [Google Scholar] [CrossRef]
  16. Feng, W.; Webb, J.R.L. Solvability of m-point boundary value problems with nonlinear growth. J. Math. Anal. Appl. 1997, 212, 467–480. [Google Scholar] [CrossRef]
  17. Ma, R.; Castaneda, N. Existence of solutions of nonlinear m-point boundary-value problems. J. Math. Anal. Appl. 2001, 256, 556–567. [Google Scholar] [CrossRef]
  18. Sun, J.; Xu, X.; O’Regan, D. Nodal solutions for m-point boundary value problems using bifurcation methods. Nonlinear Anal. Theory Methods Appl. 2008, 68, 3034–3046. [Google Scholar]
  19. Zhang, G.; Sun, J. Positive solutions of m-point boundary value problems. J. Math. Anal. Appl. 2004, 291, 406–418. [Google Scholar] [CrossRef]
  20. Zhao, Y.; Chen, H. Existence of multiple positive solutions for m-point boundary value problems in Banach spaces. J. Math. Anal. Appl. 2008, 215, 79–90. [Google Scholar] [CrossRef]
  21. Lv, Z. Positive solutions of m-point boundary value problems for fractional differential equations. Adv. Differ. Equations 2011, 2011, 1–3. [Google Scholar] [CrossRef]
  22. Henderson, J.; Luca, R. On a system of second-order multi-point boundary value problems. Appl. Math. Lett. 2012, 25, 2089–2094. [Google Scholar] [CrossRef]
  23. Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Berlin, Germany, 2010. [Google Scholar] [CrossRef]
  24. Graef, J.R.; Maazouz, K.; Zaak, M.D.A. A Comprehensive Study of the Langevin Boundary Value Problems with Variable Order Fractional Derivatives. Meccanica. Axioms 2024, 13, 277. [Google Scholar] [CrossRef]
  25. Kadda, M.; Zaak, M.D.A.; Rodríguez-López, R. Existence and Uniqueness Results for a Pantograph Boundary Value Problem Involving a Variable-Order Hadamard Fractional Derivative. Axioms 2023, 12, 1028. [Google Scholar] [CrossRef]
  26. Akgul, A.; Baleanu, D. On solutions of variable-order fractional differential equations. Int. J. Optim. Control. Theor. Appl. 2017, 7, 112–116. [Google Scholar] [CrossRef]
  27. Khan, A.; Khan, Z.A.; Abdeljawad, T.; Khan, H. Analytical analysis of fractional-order sequential hybrid system with numerical application. Adv. Contin. Discr. Model. 2022, 12, 1–9. [Google Scholar] [CrossRef]
  28. Wang, Y.; Liu, S.; Khan, A. On fractional coupled logistic maps: Chaos analysis and fractal control. Nonlinear Dyn. 2023, 111, 5889–5904. [Google Scholar] [CrossRef]
  29. Shah, K.; Ali, A.; Zeb, S.; Khan, A.; Alqudah, M.A.; Abdeljawad, T. Study of fractional order dynamics of nonlinear mathematical model. Alexand. Eng. J. 2022, 61, 11211–11224. [Google Scholar] [CrossRef]
  30. Guezane-Lakoud, A.; Khaldi, R.; Boucenna, D.; Nieto, J.J. On a Multipoint Fractional Boundary Value Problem in a Fractional Sobolev Space. Differ. Equ. Dyn. Syst. 2018, 30, 659–673. [Google Scholar] [CrossRef]
  31. Samko, S.G. Fractional integration and differentiation of variable order. Anal. Math. 1995, 21, 213–236. [Google Scholar] [CrossRef]
  32. Valério, D.; Costa, J.S. Variable-order fractional derivatives and their numerical approximations. Signal Process. 2011, 91, 470–483. [Google Scholar] [CrossRef]
  33. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
  34. Zhang, S. Existence of solutions for two-point boundary-value problems with singular differential equations of variable order. Electron. J. Differ. Equ. 2013, 2013, 1–16. [Google Scholar]
  35. Zhang, H.; Li, S.; Hu, L. The existeness and uniqueness result of solutions to initial value problems of nonlinear diffusion equations involving with the conformable variable derivative. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. Mat. 2019, 113, 1601–1623. [Google Scholar] [CrossRef]
  36. Zhang, S. The uniqueness result of solutions to initial value problems of differential equations of variable-order. Rev. R. Acad.Cienc. Exactas Fis. Nat. Ser. A Mat. 2018, 112, 407–423. [Google Scholar] [CrossRef]
  37. Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Springer: New York, NY, USA, 2010. [Google Scholar]
  38. Bergounioux, M.; Leaci, A.; Nardi, G.; Tomarelli, F. Fractional Sobolev spaces and functions of bounded variation of one variable. Fract. Calc. Appl. Anal. 2017, 20, 936–962. [Google Scholar] [CrossRef]
Figure 1. Exact solution for α ( t ) = 5 t .
Figure 1. Exact solution for α ( t ) = 5 t .
Fractalfract 09 00461 g001
Figure 2. Exact solution for α ( t ) = 5 + t 2 with negative coefficient.
Figure 2. Exact solution for α ( t ) = 5 + t 2 with negative coefficient.
Fractalfract 09 00461 g002
Figure 3. Solution for α ( t ) = 5 t .
Figure 3. Solution for α ( t ) = 5 t .
Fractalfract 09 00461 g003
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Bellabes, Z.; Maazouz, K.; Boussekkine, N.; Rodríguez-López, R. Solutions to Variable-Order Fractional BVPs with Multipoint Data in Ws,p Spaces. Fractal Fract. 2025, 9, 461. https://doi.org/10.3390/fractalfract9070461

AMA Style

Bellabes Z, Maazouz K, Boussekkine N, Rodríguez-López R. Solutions to Variable-Order Fractional BVPs with Multipoint Data in Ws,p Spaces. Fractal and Fractional. 2025; 9(7):461. https://doi.org/10.3390/fractalfract9070461

Chicago/Turabian Style

Bellabes, Zineb, Kadda Maazouz, Naima Boussekkine, and Rosana Rodríguez-López. 2025. "Solutions to Variable-Order Fractional BVPs with Multipoint Data in Ws,p Spaces" Fractal and Fractional 9, no. 7: 461. https://doi.org/10.3390/fractalfract9070461

APA Style

Bellabes, Z., Maazouz, K., Boussekkine, N., & Rodríguez-López, R. (2025). Solutions to Variable-Order Fractional BVPs with Multipoint Data in Ws,p Spaces. Fractal and Fractional, 9(7), 461. https://doi.org/10.3390/fractalfract9070461

Article Metrics

Back to TopTop