Boundary Feedback Control of a Cascade System of Fractional PDE-ODEs
Abstract
1. Introduction
2. Preliminaries
3. SFC Design
4. Mittag-Leffler Stability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feng, Y.; Yang, X.; Liu, J.; Chen, Z. Rheological analysis of the general fractional-order viscoelastic model involving the Miller-Ross kernel. Acta Mech. 2021, 232, 3141–3148. [Google Scholar] [CrossRef]
- Liu, J.; Feng, Y. Investigation of the time fractional higher-dimensional nonlinear modified equation of wave propagation. Fractal Fract. 2024, 8, 124. [Google Scholar] [CrossRef]
- Li, H.; Kao, Y. Mittag-Leffler stability for a new coupled system of fractional-order differential equations with impulses. Appl. Math. Comput. 2019, 361, 22–31. [Google Scholar] [CrossRef]
- Straka, P.; Fedotov, S. Transport equations for subdiffusion with nonlinear particle interaction. J. Theor. Biol. 2015, 366, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Majda, A.; Kramer, P. Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena. Phys. Rep. 1999, 314, 237–514. [Google Scholar] [CrossRef]
- Deng, W.; Wang, X.; Zhang, P. Anisotropic nonlocal diffusion operators for normal and anomalous dynamics. SIAM Multiscale Model. Simul. 2020, 18, 415–443. [Google Scholar] [CrossRef]
- Hou, M.; Xi, X.; Zhou, X. Boundary control of a fractional reaction-diffusion equation coupled with fractional ordinary differential equations with delay. Appl. Math. Comput. 2021, 406, 126260. [Google Scholar] [CrossRef]
- Xi, X.-X.; Zhou, Y.; Hou, M. Well-Posedness of mild Solutions for the fractional Navier–Stokes equations in Besov spaces. Qual. Theory Dyn. Syst. 2024, 23, 15. [Google Scholar] [CrossRef]
- Xi, X.X.; Hou, M.; Zhou, X.-F.; Wen, Y. Approximate controllability for mild solution of time-fractional Navier–Stokes equations with delay. Z. Angew. Math. Und Phys. 2021, 72, 113. [Google Scholar] [CrossRef]
- Gupta, D.; Das, A.; Sen, M. A mixed FEM for time-fractional biharmonic integro-differential equations. Commun. Nonlinear Sci. Numer. Simul. 2025, 152, 109153. [Google Scholar] [CrossRef]
- Barreau, M.; Seuret, A.; Gouaisbaut, F.; Baudouin, L. Lyapunov stability analysis of a string equation coupled with an ordinary differential system. IEEE Trans. Autom. Control 2018, 63, 3850–3857. [Google Scholar] [CrossRef]
- Baudouin, L.; Seuret, A.; Gouaisbaut, F. Stability analysis of a system coupled to a heat equation. Automatica 2019, 99, 195–202. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Ren, B.; Chen, J. Sliding mode control to stabilization of cascaded heat PDE-ODE systems subject to boundary control matched disturbance. Automatica 2015, 52, 23–34. [Google Scholar] [CrossRef]
- Krstic, M. Delay Compensation for Nonlinear, Adaptive, and PDE Systems; Springer: Boston, MA, USA, 2009. [Google Scholar]
- Habib, A. Exponential stabilization of cascade ODE-linearized KdV system by boundary Dirichlet actuation. Eur. J. Control 2018, 43, 33–38. [Google Scholar]
- Kang, W.; Fridman, E. Boundary control of delayed ODE-heat cascade under actuator saturation. Automatica 2017, 83, 252–261. [Google Scholar] [CrossRef]
- Amiri, S.; Keyanpour, M.; Asaraii, A. Observer-based output feedback control design for a coupled system of fractional ordinary and reaction-diffusion equations. IMA J. Math. Control Inf. 2021, 38, 90–124. [Google Scholar] [CrossRef]
- Chen, J.; Tepljakov, A.; Petlenkov, E.; Chen, Y.; Zhuang, B. State and output feedback boundary control of time fractional PDE-fractional ODE cascades with space-dependent diffusivity. IET Control Theory Appl. 2020, 14, 3589–3600. [Google Scholar] [CrossRef]
- Amiri, S.; Keyanpour, M. On the stabilization of a coupled fractional ordinary and partial differential equations. Iranian J. Numer. Anal. Optim. 2020, 10, 177–193. [Google Scholar]
- Yuan, Y.; Shen, Z.; Liao, F. Stabilization of coupled ODE-PDE system with intermediate point and spatially varying effects interconnection. Asian J. Control 2017, 19, 1060–1074. [Google Scholar] [CrossRef]
- Amiri, S.; Keyanpour, M.; Masoudi, M. Observer-based output feedback control design for a fractional ODE and a fractional PDE cascaded system. ISA Trans. 2022, 128, 144–161. [Google Scholar] [CrossRef] [PubMed]
- Matignon, D. Stability results for fractional differential equations with applications to control processing. Comput. Eng. Syst. Appl. 1992, 2, 963–968. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Duarte-Mermound, M.; Aguila-Camacho, N.; Gallegos, J.; Castro-Linares, R. Using general quadratic Lyapunov functions to prove Lyapunovuniform stability for fraction order system. Commun. Nonlinear Sci. Numer. Simul. 2016, 22, 650–659. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Podlubny, I. Mittag-Leffler stability of fraction order nonlinear dynamic systems. Automatica 2009, 45, 1965–1969. [Google Scholar] [CrossRef]
- Smyshlyaev, A.; Krstic, M. Adaptive control of parabolic PDEs. Automatica 2010, 43, 1557–1564. [Google Scholar] [CrossRef]
- Zhou, H.; Guo, B. Boundary feedback stabilization for an unstable time fractional reaction diffusion equation. SIAM J. Control Optim. 2018, 56, 75–101. [Google Scholar] [CrossRef]
- Tucsnak, M.; Weiss, G. Observation and Contorl for Oprator Semi-Groups; Birkha¨user: Basel, Switzerland, 2009. [Google Scholar]
- Tang, S.; Xie, C. Stabilization for a coupled PDE-CODE control system. J. Frankl. Inst. 2011, 348, 2142–2155. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, D.-X.; Feng, Y.-Y.; Zhu, Z.-W.; Hou, M.-M.; Wang, J. Boundary Feedback Control of a Cascade System of Fractional PDE-ODEs. Fractal Fract. 2025, 9, 514. https://doi.org/10.3390/fractalfract9080514
Fu D-X, Feng Y-Y, Zhu Z-W, Hou M-M, Wang J. Boundary Feedback Control of a Cascade System of Fractional PDE-ODEs. Fractal and Fractional. 2025; 9(8):514. https://doi.org/10.3390/fractalfract9080514
Chicago/Turabian StyleFu, Dong-Xing, Yi-Ying Feng, Zhi-Wen Zhu, Mi-Mi Hou, and Jia Wang. 2025. "Boundary Feedback Control of a Cascade System of Fractional PDE-ODEs" Fractal and Fractional 9, no. 8: 514. https://doi.org/10.3390/fractalfract9080514
APA StyleFu, D.-X., Feng, Y.-Y., Zhu, Z.-W., Hou, M.-M., & Wang, J. (2025). Boundary Feedback Control of a Cascade System of Fractional PDE-ODEs. Fractal and Fractional, 9(8), 514. https://doi.org/10.3390/fractalfract9080514