A Sufficient Condition for the Practical Stability of Riemann-Liouville Fractional Nonlinear Systems with Time Delays
Abstract
1. Introduction
- 1.
- We introduce a rigorous definition of practical stability for Riemann-Liouville fractional-order nonlinear systems with time-varying delays, explicitly accounting for the non-local memory effects inherent in fractional derivatives. This extends classical stability concepts to accommodate the hybrid dynamics of fractional calculus and phenomena with time delays.
- 2.
- By developing an enhanced Razumikhin-type approach combined with Lyapunov-Krasovskii functional analysis, we derive novel sufficient conditions for verifying practical stability in the -norm sense. These conditions provide a computationally tractable criterion with reduced conservatism compared to existing fractional-order delay system stability tests.
2. Preliminary Knowledge
3. Main Results
4. Illustrative Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mathiyalagan, K.; Ma, Y.K. Mittag-Leffler Stability of Impulsive Nonlinear Fractional-Order Systems with Time Delays. Iran. J. Sci. Technol. Trans. A Sci. 2022, 41, 1699–1718. [Google Scholar] [CrossRef]
- Wang, Z.; He, W.; Wang, G.; Sun, J. Novel Stability Criteria of Asynchronously Switched Nonlinear Neutral Time-Delay Systems. IEEE Trans. Cybern. 2024, 41, 1699–1718. [Google Scholar] [CrossRef]
- Hewit, J.R.; Storey, C. Practical stability in polar co-ordinates. Electron. Lett. 1967, 3, 558–559. [Google Scholar] [CrossRef]
- González, A. Improved results on stability analysis of time-varying delay systems via delay partitioning method and Finsler’s lemma. J. Frankl. Inst.-Eng. Appl. Math. 2022, 359, 7632–7649. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: London, UK, 1999. [Google Scholar]
- Li, C.P.; Zhang, F.R. A survey on the stability of fractional differential equations. Eur. Phys. J.-Spec. Top. 2011, 193, 27–47. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Li, C.; Chen, Y.Q. Stability Analysis of Fractional-Order Systems with Time-Delay. J. Frankl. Inst.-Eng. Appl. Math. 2009, 346, 1276–1292. [Google Scholar] [CrossRef]
- Hayek, N.; Trujillo, J.; Rivero, M.; Bonilla, B.; Moreno, J.C. An extension of picard-lindeloff theorem to fractional differential equations. Appl. Anal. 1998, 70, 347–361. [Google Scholar] [CrossRef]
- Mahajan, P.; Srivastava, S.K.; Dogra, R. Practical stability and boundedness criteria for impulsive differential systems with initial time difference. TWMS J. Appl. Eng. Math. 2021, 11, 155–163. [Google Scholar]
- Agarwal, R.; Almeida, R.; Hristova, S.; O’Regan, D. Non-instantaneous impulsive fractional differential equations with state dependent delay and practical stability. Acta Math. Sci. 2021, 41, 1699–1718. [Google Scholar] [CrossRef]
- Martynyuk, A.A.; Sun, Z.Q. Practical Stability and Applications; Science Press: Beijing, China, 2004. [Google Scholar]
- Alikhani, G.; Balochian, S. Robust stability control for nonlinear time varying delay fractional order practical systems and application in Glucose-Insulin system. Comput. Methods Biomech. Biomed. Eng. 2023, 26, 1796–1805. [Google Scholar] [CrossRef] [PubMed]
- Basson, N.; Peng, C.H.S.; Geoghegan, P.; van der Lecq, T.; Steven, D.; Williams, S.; Lim, A.E.; Ho, W.H. A computational fluid dynamics investigation of endothelial cell damage from glaucoma drainage devices. Sci. Rep. 2024, 14, 3777. [Google Scholar] [CrossRef] [PubMed]
- Devi, J.V.; Mc Rae, F.A.; Drici, Z. Variational Lyapunov method for fractional differential equations. Comput. Math. Appl. 2012, 64, 2982–2989. [Google Scholar] [CrossRef]
- Agarwal, R.; Hristova, S.; O’Regan, D. Practical stability for Riemann-Liouville delay fractional differential equations. Arab. J. Math. 2021, 10, 271–283. [Google Scholar] [CrossRef]
- Chen, B.; Chen, J. Razumikhin-type stability theorems for functional fractional-order differential systems and applications. Appl. Math. Comput. 2015, 254, 63–69. [Google Scholar] [CrossRef]
- Jayawardhana, B.; Almuzakki, M.Z.; Tanwani, A. Practical Stabilization of Passive Nonlinear Systems with Limited Control. IFAC-PapersOnLine 2019, 52, 460–465. [Google Scholar] [CrossRef]
- Kim, J.S.; Back, J.H. Practical Stabilization of an Uncertain Linear Systems using State Feedback based Disturbance Observer. J. Inst. Control. Robot. Syst. 2017, 23, 942–947. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, S.; Zhang, Z.; Chu, Y. Practical stability of a nonlinear system with delayed control input. Appl. Math. Comput. 2022, 423, 127–138. [Google Scholar] [CrossRef]
- Kuiava, R.; Ramos, R.A.; Pota, H.R.; Alberto, L.F. Practical stability of switched systems without a common equilibria and governed by a time-dependent switching signal. Eur. J. Control. 2013, 19, 206–213. [Google Scholar] [CrossRef]
- Stamov, G.; Stamova, I.; Li, X.D.; Gospodinova, E. Practical Stability with Respect to h-Manifolds for Impulsive Control Functional Differential Equations with Variable Impulsive Perturbations. Mathematics 2019, 7, 525–537. [Google Scholar] [CrossRef]
- Tahmasbi, N.; Tehrani, H.A.; Esmaeili, J. Practical stabilization of time-delay fractional-order systems by parametric controllers. ISA Trans. 2019, 95, 211–220. [Google Scholar] [CrossRef]
- Ruszewski, A. Practical and asymptotic stability of fractional discrete-time scalar systems described by a new model. Arch. Control. Sci. 2016, 26, 441–452. [Google Scholar] [CrossRef]
- Stamov, G.; Stamova, I.; Martynyuk, A.; Stamov, T. Design and Practical Stability of a New Class of Impulsive Fractional-Like Neural Networks. Entropy 2020, 22, 336–337. [Google Scholar] [CrossRef]
- Agarwal, R.; Hristova, S.; O’Regan, D. Generalized Proportional Caputo Fractional Differential Equations with Delay and Practical Stability by the Razumikhin Method. Mathematics 2022, 10, 1848–1849. [Google Scholar] [CrossRef]
- Yang, H.; Jia, Y. New conditions and numerical checking methods for the practical stability of fractional order positive discrete time linear systems. Int. J. Nonlinear Sci. Numer. Simul. 2019, 20, 315–323. [Google Scholar] [CrossRef]
- Stamova, I.; Henderson, J. Practical stability analysis of fractional-order impulsive control systems. ISA Trans. 2016, 64, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Petráš, I.; Vinagre, B.M. Practical application of digital fractional-order controller to temperature control. Acta Montan. Slovaca 2002, 7, 131–137. [Google Scholar]
- Si, X.; Yang, H.; Ivanov, I. Conditions and computation method of constrained regulation problem for a class of fractional-order nonlinear continuous-time systems. Int. J. Appl. Math. Comput. Sci. 2021, 31, 17–28. [Google Scholar] [CrossRef]
- Yakar, C.; Çiçek, M.; Gücen, M.B. Practical stability, boundedness criteria and Lagrange stability of fuzzy differential systems. Comput. Math. Appl. 2012, 64, 2118–2127. [Google Scholar] [CrossRef]
- Zhao, P. Practical stability, controllability and optimal control of stochastic Markovian jump systems with time-delays. Automatica 2008, 44, 3120–3125. [Google Scholar] [CrossRef]
- Yang, H.; Si, X.; Ivanov, I.G. Constrained State Regulation Problem of Descriptor Fractional-Order Linear Continuous-Time Systems. Fractal Fract. 2024, 8, 255. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Yang, H.; Ivanov, I.G. A Sufficient Condition for the Practical Stability of Riemann-Liouville Fractional Nonlinear Systems with Time Delays. Fractal Fract. 2025, 9, 502. https://doi.org/10.3390/fractalfract9080502
Jiang Y, Yang H, Ivanov IG. A Sufficient Condition for the Practical Stability of Riemann-Liouville Fractional Nonlinear Systems with Time Delays. Fractal and Fractional. 2025; 9(8):502. https://doi.org/10.3390/fractalfract9080502
Chicago/Turabian StyleJiang, Yongchun, Hongli Yang, and Ivan G. Ivanov. 2025. "A Sufficient Condition for the Practical Stability of Riemann-Liouville Fractional Nonlinear Systems with Time Delays" Fractal and Fractional 9, no. 8: 502. https://doi.org/10.3390/fractalfract9080502
APA StyleJiang, Y., Yang, H., & Ivanov, I. G. (2025). A Sufficient Condition for the Practical Stability of Riemann-Liouville Fractional Nonlinear Systems with Time Delays. Fractal and Fractional, 9(8), 502. https://doi.org/10.3390/fractalfract9080502