Boundedness and Sobolev-Type Estimates for the Exponentially Damped Riesz Potential with Applications to the Regularity Theory of Elliptic PDEs
Abstract
1. Introduction
2. Preliminary Framework
- : The -dimensional Euclidean space.
- : The set of all positive real numbers.
- : The Lebesgue measure of a measurable set .
- : The set of log-Hölder continuous exponent functions defined on a domain .
- : The Sobolev space of functions in whose first weak derivatives also belong to .
- The notation means that there exists a constant , independent of essential parameters, such that . Similarly, indicates .
2.1. Semi-Modular Spaces
- Nullity: .
- Unit Scalar Invariance: For all and with ,
- Definiteness: If for all , then it necessarily follows that .
- Left-Continuity: The mapping exhibits left-continuity for every .
- Monotonicity: The mapping is monotonically decreasing for each .
2.2. Variable Exponent Spaces
- (1)
- If , then for all ,When , the reverse inequalities hold.
- (2)
- If , then for all ,
- (p1)
- Let be a continuous function on that is both locally and globally log-Hölder continuous, i.e., , satisfying the following conditions:
- (p2)
- There exists a constant such that
- is sublinear, that is, for all and ,
- If is not identically zero, then for any bounded measurable set , there exists such that
- If is not zero almost everywhere, then
- If , then and the norms coincide:
3. Main Results
Exponentially Damped Riesz-Type Fractional Integral Operator
- When and , the operator defined in Definition 4 reduces to
- For ,
- For ,
- For , corresponding to small , the exponent dominates;
- For , corresponding to large , the exponent dominates.
- If , then
- If , then
- For :yielding
- For :thus
- For :
- For :
- -
- For ,
- -
- For ,Now applying the modular-norm inequality
- -
- For ,
- -
- For ,
4. Fractional Sobolev-Type Inequality with Exponentially Damped Kernel
- (i)
- ;
- (ii)
- ;
- (iii)
- .
5. Applications to Elliptic Partial Differential Equation
6. Conclusions and Future Remarks
Future Work
- Investigating the compactness, weak-type estimates, and sharp bounds of the exponentially damped operator under refined modular conditions.
- Extending the current framework to more generalized function spaces such as variable exponent Morrey- or Besov-type spaces.
- Exploring connections with time-fractional and space–time nonlocal evolution equations, where the damping effect could yield improved regularity criteria.
- Developing numerical schemes or approximation theories based on this operator for solving real-world models involving anomalous diffusion or memory effects.
- Studying the boundedness and potential inequalities involving the composition of the exponentially damped operator with other integral or differential operators.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, L.C. Partial Differential Equations; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 2010; Volume 19. [Google Scholar]
- Zhang, Z.; Lin, M.; Li, D.; Wu, R.; Lin, R.; Yang, C. An AUV-Enabled Dockable Platform for Long-Term Dynamic and Static Monitoring of Marine Pastures. IEEE J. Ocean. Eng. 2024, 50, 276–293. [Google Scholar] [CrossRef]
- Duoandikoetxea, J. Fourier Analysis; American Mathematical Society: Providence, RI, USA, 2001. [Google Scholar]
- García-Cuerva, J.; Rubio de Francia, J.L. Weighted Norm Inequalities and Related Topics; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Cruz-Uribe, D.V.; Fiorenza, A. Variable Lebesgue spaces: Foundations and harmonic analysis. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2017. [Google Scholar]
- Gao, Z.; Yi, W. Prediction of Projectile Interception Point and Interception Time Based on Harris Hawk Optimization–Convolutional Neural Network–Support Vector Regression Algorithm. Mathematics 2025, 13, 338. [Google Scholar] [CrossRef]
- Alsaraireh, S.; Ahmad, A.; AbuHour, Y. New Step in Lightweight Medical Image Encryption and Authenticity. Mathematics 2025, 13, 1799. [Google Scholar] [CrossRef]
- Zheng, D.; Cao, X. Provably efficient service function chain embedding and protection in edge networks. IEEE/ACM Trans. Netw. 2024, 37, 12345. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, F.; Qian, J.; Fujita, H.; Yu, J.; Zeng, K.; Chen, E. CrowdFPN: Crowd counting via scale-enhanced and location-aware feature pyramid network. Appl. Intell. 2025, 55, 359. [Google Scholar] [CrossRef]
- Zhang, D.; Li, B.; Wei, Y.; Zhang, H.; Lu, G.; Fan, L.; Xu, J. Investigation of injection and flow characteristics in an electronic injector featuring a novel control valve. Energy Convers. Manag. 2025, 327, 119609. [Google Scholar] [CrossRef]
- Fei, R.; Wan, Y.; Hu, B.; Li, A.; Cui, Y.; Peng, H. Deep core node information embedding on networks with missing edges for community detection. Inf. Sci. 2025, 707, 122039. [Google Scholar] [CrossRef]
- Zhang, H.H.; Yao, H.M.; Jiang, L.J. Novel time domain integral equation method hybridized with the macromodels of circuits. In Proceedings of the 2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS), San Jose, CA, USA, 25–28 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 135–138. [Google Scholar]
- Afzal, W.; Cotîrlă, L.-I. New Numerical Quadrature Functional Inequalities on Hilbert Spaces in the Framework of Different Forms of Generalized Convex Mappings. Symmetry 2025, 17, 146. [Google Scholar] [CrossRef]
- Cruz-Uribe, D.V.; Pérez, C. Sharp weighted estimates for classical operators. Adv. Math. 2014, 248, 821–847. [Google Scholar] [CrossRef]
- Lerner, A.K. A simple proof of the A2 conjecture. Int. Math. Res. Not. 2013, 2013, 3159–3170. [Google Scholar] [CrossRef]
- Diening, L.; Harjulehto, P.; Hästö, P.; Růžička, M. Lebesgue and Sobolev Spaces with Variable Exponents. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2011; Volume 2017. [Google Scholar]
- Cazacu, C.; Dávila, J.; Valdinoci, E. Nonlocal diffusion and applications. In Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions; Andreu, F., Mazón, J.M., Rossi, J.D., Toledo, J., Eds.; Springer INdAM Series; Springer: Cham, Switzerland, 2018; Volume 28, pp. 1–25. [Google Scholar]
- Molchanov, S.; Vainberg, B. Theory of Self-Adjoint Extensions of the Fractional Laplacian; Memoirs of the American Mathematical Society; American Mathematical Society: Providence, RI, USA, 2020; Volume 264, No. 1278. [Google Scholar]
- Nieraeth, B.; Cwikel, M. Interpolation methods and fractional smoothness in harmonic analysis. Mathematics 2022, 10, 120. [Google Scholar]
- Grafakos, L. Modern Fourier Analysis, 3rd ed.; Springer: New York, NY, USA, 2014. [Google Scholar]
- Kováčik, O.; Rákosník, J. Some remarks on variable exponent spaces. Funct. Approx. Comment. Math. 2014, 51, 51–68. [Google Scholar]
- Gogatishvili, A.; Mustafayev, R.C.; Deringoz, F. Boundedness of the Hardy operator in variable exponent Lebesgue spaces. J. Inequal. Appl. 2016, 2016, 1–14. [Google Scholar]
- Guliyev, V.S.; Deringoz, F.; Samko, S. Boundedness of the commutators of fractional maximal and integral operators in generalized Morrey spaces with variable exponents. J. Funct. Spaces 2018, 2018, 3831581. [Google Scholar]
- Zhang, P.; Yuan, W. Boundedness of singular integrals on variable exponent Herz spaces. Nonlinear Anal. Theory Methods Appl. 2016, 135, 169–181. [Google Scholar]
- Cleanthous, G.; Gogatishvili, A.; Růžička, M. Modular inequalities and function spaces with variable exponents. Rev. Mat. Complut. 2020, 33, 1–42. [Google Scholar]
- Long, Y.; Yang, D.; Zhuo, C. Variable exponent function spaces on RD-spaces and applications. Math. Nachr. 2016, 289, 676–737. [Google Scholar]
- Guan, Y.; Cui, Z.; Zhou, W. Reconstruction in off-axis digital holography based on hybrid clustering and the fractional Fourier transform. Opt. Laser Technol. 2025, 186, 112622. [Google Scholar] [CrossRef]
- Zhang, H.H.; Xue, Z.S.; Liu, X.Y.; Li, P.; Jiang, L.; Shi, G.M. Optimization of high-speed channel for signal integrity with deep genetic algorithm. IEEE Trans. Electromagn. Compat. 2022, 64, 1270–1274. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, W.; Kuang, H.; Chen, Z.; Yang, J.; Chen, Z.; Chen, F. Dynamic model and vibration of rack vehicle on curve line. Veh. Syst. Dyn. 2025, 1–19. [Google Scholar] [CrossRef]
- Afzal, W.; Abbas, M.; Meetei, M.Z.; Bourazza, S. Tensorial Maclaurin Approximation Bounds and Structural Properties for Mixed-Norm Orlicz–Zygmund Spaces. Mathematics 2025, 13, 917. [Google Scholar] [CrossRef]
- Afzal, W.; Abbas, M.; Aloraini, N.M.; Ro, J. Resolution of Open Problems via Orlicz-Zygmund Spaces and New Geometric Properties of Morrey Spaces in the Besov Sense with Non-Standard Growth. AIMS Math. 2025, 10, 13908–13940. [Google Scholar] [CrossRef]
- Khan, Z.A.; Afzal, W. An Estimation of Different Kinds of Integral Inequalities for a Generalized Class of Godunova–Levin Convex and Preinvex Functions via Pseudo and Standard Order Relations. J. Funct. Spaces 2025, 2025, 3942793. [Google Scholar] [CrossRef]
- Aubin, T. Some Nonlinear Problems in Riemannian Geometry; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Maz’ya, V.G. Sobolev Spaces with Applications to Elliptic Partial Differential Equations, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Di Nezza, E.; Palatucci, G.; Valdinoci, E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573. [Google Scholar] [CrossRef]
- Palatucci, G.; Pisante, A. Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calc. Var. Partial Differ. Equ. 2014, 50, 799–829. [Google Scholar] [CrossRef]
- Hebey, E. Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities; Courant Lecture Notes; Courant Institute of Mathematical Sciences: New York, NY, USA, 2010. [Google Scholar]
- Figalli, A.; Maggi, F. On the shape of liquid drops and crystals in the small mass regime. Arch. Ration. Mech. Anal. 2011, 201, 143–207. [Google Scholar] [CrossRef]
- Gentil, I. The dimensional Sobolev inequality using the mass transportation method. C. R. Math. 2007, 345, 713–718. [Google Scholar]
- Adams, D.R.; Hedberg, L.I. Function Spaces and Potential Theory; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Liu, H.; Zhao, L. Ground-state solution of a nonlinear fractional Schrödinger–Poisson system. Math. Methods Appl. Sci. 2022, 45, 1934–1958. [Google Scholar] [CrossRef]
- Ruzhansky, M.; Suragan, D.; Yessirkegenov, N. Caffarelli–Kohn–Nirenberg and Sobolev type inequalities on stratified Lie groups. Nonlinear Differ. Equ. Appl. NoDEA 2017, 24, 56. [Google Scholar] [CrossRef]
- Capone, C.; Fiorenza, A.; Karadzhov, G.E.; Nazeer, W. The Riesz potential operator in optimal couples of rearrangement invariant spaces. Z. Anal. Anwend. 2011, 30, 219–236. [Google Scholar] [CrossRef]
- Afzal, W.; Abbas, M.; Alsalami, O.M. Bounds of Different Integral Operators in Tensorial Hilbert and Variable Exponent Function Spaces. Mathematics 2024, 12, 2464. [Google Scholar] [CrossRef]
- Ohno, T.; Shimomura, T. Campanato–Morrey spaces and variable Riesz potentials. Acta Math. Hung. 2024, 174, 62–74. [Google Scholar] [CrossRef]
- Mehmood, S.; Eridani; Fatmawati; Raza, W. Bessel–Riesz operators on Lebesgue spaces and Morrey spaces defined in measure metric spaces. Int. J. Differ. Equ. 2023, 2023, 3148049. [Google Scholar] [CrossRef]
- Dymek, M.; Górka, P. Compactness in the spaces of variable integrability and summability. Math. Nachr. 2023, 296, 4317–4334. [Google Scholar] [CrossRef]
- Stein, E.M. Singular Integrals and Differentiability Properties of Functions; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]
- Diening, L. Maximal Function on Generalized Lebesgue Spaces Lp(·). Math. Inequal. Appl. 2004, 7, 245–254. [Google Scholar]
- Ragusa, M.A. Homogeneous Herz spaces and regularity results. Nonlinear Anal. Theory Methods Appl. 2009, 71, e1909–e1914. [Google Scholar] [CrossRef]
- Makharadze, D.; Meskhi, A.; Ragusa, M.A. Regularity results in grand variable exponent Morrey spaces and applications. Electron. Res. Arch. 2025, 33, 5. [Google Scholar] [CrossRef]
- Boccardo, L.; Croce, G. Elliptic Partial Differential Equations: Existence and Regularity of Distributional Solutions; de Gruyter: Berlin, Germany, 2014. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afzal, W.; Abbas, M.; Macías-Díaz, J.E.; Gallegos, A.; Almalki, Y. Boundedness and Sobolev-Type Estimates for the Exponentially Damped Riesz Potential with Applications to the Regularity Theory of Elliptic PDEs. Fractal Fract. 2025, 9, 458. https://doi.org/10.3390/fractalfract9070458
Afzal W, Abbas M, Macías-Díaz JE, Gallegos A, Almalki Y. Boundedness and Sobolev-Type Estimates for the Exponentially Damped Riesz Potential with Applications to the Regularity Theory of Elliptic PDEs. Fractal and Fractional. 2025; 9(7):458. https://doi.org/10.3390/fractalfract9070458
Chicago/Turabian StyleAfzal, Waqar, Mujahid Abbas, Jorge E. Macías-Díaz, Armando Gallegos, and Yahya Almalki. 2025. "Boundedness and Sobolev-Type Estimates for the Exponentially Damped Riesz Potential with Applications to the Regularity Theory of Elliptic PDEs" Fractal and Fractional 9, no. 7: 458. https://doi.org/10.3390/fractalfract9070458
APA StyleAfzal, W., Abbas, M., Macías-Díaz, J. E., Gallegos, A., & Almalki, Y. (2025). Boundedness and Sobolev-Type Estimates for the Exponentially Damped Riesz Potential with Applications to the Regularity Theory of Elliptic PDEs. Fractal and Fractional, 9(7), 458. https://doi.org/10.3390/fractalfract9070458