Existence and Uniqueness Analysis for (k, ψ)-Hilfer and (k, ψ)-Caputo Sequential Fractional Differential Equations and Inclusions with Non-Separated Boundary Conditions
Abstract
1. Introduction
2. Preliminaries
- (i)
- (ii)
- .
3. The Single-Valued Case
3.1. Existence and Uniqueness Result via Banach Contraction Mapping Principle
- ()
- There exists a positive real constant such thatfor all and .If
3.2. Existence Result via Schaefer’s Fixed Point Theorem
- ()
- There exists a real constant such that for all , ,
3.3. Existence Result via Leray–Schauder Nonlinear Alternative
- (i)
- T has a fixed point in , or
- (ii)
- there is a (the boundary of U in C) and with .
- ()
- There exists a continuous, non-decreasing function and a positive continuous function such thatfor all and .
- ()
- There exists a positive constant such thatwhere is defined by (15).
3.4. Existence Result via Krasnosel’ski’s Fixed Point Theorem
- (i)
- whenever
- (ii)
- is compact and continuous.
- (iii)
- is a contraction mapping.
3.5. Illustrative Examples for Single-Valued Case
4. Multi-Valued Case
4.1. Case 1: Convex-Valued Multi-Functions
- (i)
- the mapping is measurable for every and
- (ii)
- the function is upper semi-continuous for almost every .
- (iii)
- for each , there exists a function such that for all with and for almost every .
- The multi-function is -Carathéodory;
- There exists a nondecreasing function and a continuous function q: such that
- There exists a positive number M such that
4.2. Case 2: Nonconvex Valued Multi-Functions
- (a)
- –Lipschitz if there exists a constant such that
- (b)
- a contraction, if it is .
4.3. Illustrative Examples for Multi-Valued Case
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific Publishing Co.: Hackensack, NJ, USA, 2000. [Google Scholar]
- Soong, T.T. Random Differential Equations in Science and Engineering; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Hilfer, R. Experimental evidence for fractional time evolution in glass forming materials. J. Chem. Phys. 2002, 284, 399–408. [Google Scholar] [CrossRef]
- Kherraz, T.; Benbachir, M.; Lakrib, M.; Samei, M.E.; Kaabar, M.K.S.; Bhanotar, A. Existence and uniqueness results for fractional boundary value problems with multiple orders of fractional derivatives and integrals. Chaos Solitons Fractals 2023, 166, 113007. [Google Scholar] [CrossRef]
- Lachouri, A.; Ardjouni, A. The existence and Ulam-Hyers stability results for generalized Hilfer fractional integro-differential equations with nonlocal integral boundary conditions. Adv. Theory Nonlinear Anal. Appl. 2022, 6, 101–117. [Google Scholar] [CrossRef]
- Fazli, H.; Juan, J.N.; Bahrami, F. On the existence and uniqueness results for nonlinear sequential fractional differential equations. Appl. Comput. Math. 2018, 17, 36–47. [Google Scholar]
- Abbas, M.I. On the nonlinear sequential ψ-Hilfer fractional differential equations. Int. J. Math. Anal. 2020, 14, 77–90. [Google Scholar] [CrossRef]
- Ntouyas, S.K.; Vivek, D. Existence and uniqueness results for sequential ψ-Hilfer fractional differential equations with multi-point boundary conditions. Acta Math. Univ. Comen. 2021, 90, 171–185. [Google Scholar]
- Ntouyas, S.K.; Ahmad, B.; Tariboon, J. (k, ψ)-Hilfer nonlocal integro-multi-point boundary value problems for fractional differential equations and inclusions. Mathematics 2022, 10, 2615. [Google Scholar] [CrossRef]
- Ntouyas, S.K.; Ahmad, B.; Tariboon, J. Nonlocal ψ-Hilfer generalized proportional boundary value problems for fractional differential equations and inclusions. Foundations 2022, 2, 377–398. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; De Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Diaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Math. 2004, 15, 179–192. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. k-Fractional integrals and application. Int. J. Contemp. Math. Sci 2012, 7, 89–94. [Google Scholar]
- Romero, L.G.; Luque, L.L.; Dorrego, G.A.; Cerutti, R.A. On the k-Riemann–Liouville fractional derivative. Int. J. Contemp. Math. Sci. 2013, 8, 41–51. [Google Scholar] [CrossRef]
- Kwun, Y.C.; Farid, G.; Nazeer, W.; Ullah, S.; Kang, S.M. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access 2018, 6, 64946–64953. [Google Scholar] [CrossRef]
- Kucche, K.D.; Mali, A.D. On the nonlinear (k, ψ)-Hilfer fractional differential equations. Chaos Solitons Fractals 2021, 152, 111335. [Google Scholar] [CrossRef]
- Samadi, A.; Ntouyas, S.K.; Tariboon, J. Mixed Hilfer and Caputo fractional Riemann–Stieltjes integro-differential equations with non-separated boundary conditions. Mathematics 2024, 12, 1361. [Google Scholar] [CrossRef]
- Ahmed, I.; Ntouyas, S.K.; Ahmad, B.; Tariboon, J. Separated boundary value problems via quantum Hilfer and Caputo operators. AIMS Math. 2024, 9, 19473–19494. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Math. Stud., 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Sabatier, J.; Agrawal, O.P.; Machado, J.A.T. Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
- Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
- Smart, D.R. Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1980. [Google Scholar]
- Carothers, N.L. Real Analysis; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
- Deimling, K. Multivalued Differential Equations; De Gruyter: Berlin, Germany, 1992. [Google Scholar]
- Górniewicz, L. Topological Fixed Point Theory of Multivalued Mappings; Mathematics and its Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Hu, S.; Papageorgiou, N.S. Handbook of Multivalued Analysis, Volume I: Theory; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Lasota, A.; Opial, Z. An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 1965, 13, 781–786. [Google Scholar]
- Covitz, H.; Nadler, S.B., Jr. Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 1970, 8, 5–11. [Google Scholar] [CrossRef]
- Castaing, C.; Valadier, M. Convex Analysis and Measurable Multifunctions; Lecture Notes in Mathematics 580; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1977. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erkan, F.; Hamal, N.A.; Ntouyas, S.K.; Tariboon, J. Existence and Uniqueness Analysis for (k, ψ)-Hilfer and (k, ψ)-Caputo Sequential Fractional Differential Equations and Inclusions with Non-Separated Boundary Conditions. Fractal Fract. 2025, 9, 437. https://doi.org/10.3390/fractalfract9070437
Erkan F, Hamal NA, Ntouyas SK, Tariboon J. Existence and Uniqueness Analysis for (k, ψ)-Hilfer and (k, ψ)-Caputo Sequential Fractional Differential Equations and Inclusions with Non-Separated Boundary Conditions. Fractal and Fractional. 2025; 9(7):437. https://doi.org/10.3390/fractalfract9070437
Chicago/Turabian StyleErkan, Furkan, Nuket Aykut Hamal, Sotiris K. Ntouyas, and Jessada Tariboon. 2025. "Existence and Uniqueness Analysis for (k, ψ)-Hilfer and (k, ψ)-Caputo Sequential Fractional Differential Equations and Inclusions with Non-Separated Boundary Conditions" Fractal and Fractional 9, no. 7: 437. https://doi.org/10.3390/fractalfract9070437
APA StyleErkan, F., Hamal, N. A., Ntouyas, S. K., & Tariboon, J. (2025). Existence and Uniqueness Analysis for (k, ψ)-Hilfer and (k, ψ)-Caputo Sequential Fractional Differential Equations and Inclusions with Non-Separated Boundary Conditions. Fractal and Fractional, 9(7), 437. https://doi.org/10.3390/fractalfract9070437