Anomalous Diffusion Models Involving Regularized General Fractional Derivatives with Sonin Kernels
Abstract
1. Introduction
2. Definitions and Basic Properties of the GFDs and GFIs
- (1)
- (2)
- The relations
3. The General Fractional Master Equation Involving Regularized GFDs
3.1. The CTRW Model
3.2. The General Fractional Master Equation
3.3. The General Fractional Master Equation as a CTRW Model
4. The Fractional Diffusion Equation with Regularized GFDs
4.1. Derivation of the Fractional Diffusion Equation Involving Regularized GFDs
4.2. MSD of a Random Walker Governed by the Fractional Diffusion Equation with Regularized GFDs
4.3. Mathematical Properties of Solutions to the Fractional Diffusion Equation with Regularized GFDs
- (K1)
- The Laplace transform of k exists for all real .
- (K2)
- The Laplace transform is a Stieltjes function (see [47] for definition and properties of the Stieltjes functions).
- (K3)
- The Laplace transform meets the asymptotical relations and as and and as .
- (L1)
- ,
- (L2)
- and for ,
- (L3)
- .
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Atanacković, T.M.; Pilipović, S.; Stanković, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes, Mechanical Engineering and Solid Mechanics, 1st ed.; Wiley-ISTE: London, UK, 2014. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics, 1st ed.; World Scientific Publishing Company: Singapore, 2000. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Nonlinear Physical Science, 1st ed.; Springer: Heidelberg, Germany, 2011. [Google Scholar]
- Tarasov, V.E. Mathematical Economics: Application of Fractional Calculus. Mathematics 2020, 8, 660. [Google Scholar] [CrossRef]
- Fallahgoul, H.; Focardi, S.M.; Fabozzi, F. Fractional Calculus and Fractional Processes with Applications to Financial Economics, 1st ed.; Academic Press: London, UK, 2016. [Google Scholar]
- Atanacković, T.M.; Pilipović, S. Zener Model with General Fractional Calculus: Thermodynamical Restrictions. Fractal Fract. 2022, 6, 617. [Google Scholar] [CrossRef]
- Obembe, A.D.; Al-Yousef, H.Y.; Hossain, M.E.; Abu-Khamsin, S.A. Fractional derivatives and their applications in reservoir engineering problems: A review. J. Pet. Sci. Eng. 2017, 157, 312–327. [Google Scholar] [CrossRef]
- Povstenko, Y. Fractional Thermoelasticity, 1st ed.; Birkhäuser: Basel, Switzerland, 2015. [Google Scholar]
- Freed, A.; Diethelm, K.; Luchko, Y. Fractional-Order Viscoelasticity (FOV): Constitutive Development Using the Fractional Calculus, 1st ed.; NASA’s Glenn Research Center: Brook Rark, OH, USA, 2002.
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, 2nd ed.; World Scientific Publishing Company: Singapore, 2022. [Google Scholar]
- Magin, R.L. Fractional Calculus in Bioengineering, 1st ed.; Begell House Inc.: Redding, CT, USA, 2006. [Google Scholar]
- Klages, R.; Radons, G.; Sokolov, I.M. Anomalous Transport: Foundations and Applications, 1st ed.; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 2004, 37, 161–208. [Google Scholar] [CrossRef]
- Montroll, E.; Weiss, G. Random walks on lattices II. J. Math. Phys. 1965, 6, 167–181. [Google Scholar] [CrossRef]
- Hilfer, R.; Anton, L. Fractional Master Equations and Fractal Time Random Walk. Phys. Rev. E 1995, 51, R848. [Google Scholar] [CrossRef]
- Hilfer, R. Exact Solutions for a Class of Fractal Time Random Walks. Fractals 1995, 3, 211–216. [Google Scholar] [CrossRef]
- Schneider, W.R.; Wyss, W. Fractional Diffusion and Wave Equations. J. Math. Phys. 1989, 30, 134–144. [Google Scholar] [CrossRef]
- Schiessel, H.; Sokolov, I.M.; Blumen, A. Dynamics of a polyampholyte hooked around an obstacle. Phys. Rev. E 1997, 56, R2390. [Google Scholar] [CrossRef]
- Igloi, F.; Turban, L.; Rieger, H. Anomalous diffusion in aperiodic environments. Phys. Rev. E 1999, 59, 1465. [Google Scholar] [CrossRef]
- Prosen, T.; Znidaric, M. Anomalous diffusion and dynamical localization in polygonal billiards. Phys. Rev. Lett. 2001, 87, 114101. [Google Scholar] [CrossRef]
- Chechkin, A.V.; Gorenflo, R.; Sokolov, I.M. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 2002, 66, 046129. [Google Scholar] [CrossRef] [PubMed]
- Chechkin, A.V.; Gorenflo, R.; Sokolov, I.M.; Gonchar, V.Y. Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal. 2003, 6, 259–280. [Google Scholar]
- Garrappa, R.; Giusti, A.; Mainardi, F. Variable-order fractional calculus: A change of perspective. Commun. Nonlinear Sci. Numer. Simul. 2021, 102, 105904. [Google Scholar] [CrossRef]
- Beghin, L.; Cristofaro, L.; Garrappa, R. Renewal processes linked to fractional relaxation equations with variable order. J. Math. Anal. Appl. 2024, 531, 127795. [Google Scholar] [CrossRef]
- Gorenflo, R.; Luchko, Y.; Stojanovic, M. Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 2013, 16, 297–316. [Google Scholar] [CrossRef]
- Kochubei, A.N. General fractional calculus, evolution equations, and renewal processes. Integral Equ. Oper. Theory 2011, 71, 583–600. [Google Scholar] [CrossRef]
- Luchko, Y. General fractional integrals and derivatives and their applications. Phys. D Nonlinear Phenom. 2023, 455, 133906. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional calculus: Multi-kernel approach. Mathematics 2021, 9, 1501. [Google Scholar] [CrossRef]
- Luchko, Y. On Symmetrical Sonin Kernels in Terms of Hypergeometric-Type Functions. Mathematics 2024, 12, 3943. [Google Scholar] [CrossRef]
- Samko, S.G.; Cardoso, R.P. Integral equations of the first kind of Sonine type. Int. J. Math. Math. Sci. 2003, 57, 3609–3632. [Google Scholar] [CrossRef]
- Mišković-Stanković, V.; Atanacković, T.M. On a System of Equations with General Fractional Derivatives Arising in Diffusion Theory. Fractal Fract. 2023, 7, 518. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal statistical mechanics: General fractional Liouville equations and their solutions. Phys. A Stat. Mech. Its Appl. 2023, 609, 128366. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal classical theory of gravity: Massiveness of nonlocality and mass shielding by nonlocality. Eur. Phys. J. Plus. 2022, 137, 1336. [Google Scholar] [CrossRef]
- Sonine, N. Sur la généralisation d’une formule d’Abel. Acta Math. 1884, 4, 171–176. [Google Scholar] [CrossRef]
- Abel, N.H. Oplösning af et Par Opgaver ved Hjelp af bestemte Integraler. Mag. Naturvidenskaberne 1823, 2, 55–68. [Google Scholar]
- Abel, N.H. Auflösung einer mechanischen Aufgabe. J. Reine Angew. Math. 1826, 1, 153–157. [Google Scholar]
- Luchko, Y. General fractional integrals and derivatives with the Sonine kernels. Mathematics 2021, 9, 594. [Google Scholar] [CrossRef]
- Luchko, Y. Operational calculus for the general fractional derivatives with the Sonine kernels. Fract. Calc. Appl. Anal. 2021, 24, 338–375. [Google Scholar] [CrossRef]
- Hanyga, A. A comment on a controversial issue: A Generalized Fractional Derivative cannot have a regular kernel. Fract. Calc. Anal. Appl. 2020, 23, 211–223. [Google Scholar] [CrossRef]
- Rubin, B.S.; Volodarskaja, G.F. An embedding theorem for convolutions on a finite interval and its application to integral equations of the first kind. Sov. Math. Dokl. 1979, 20, 234–239. [Google Scholar]
- Klafter, J.; Blumen, A.; Shlesinger, M. Stochastic pathway to anomalous diffusion. Phys. Rev. A 1987, 35, 3081. [Google Scholar] [CrossRef] [PubMed]
- Luchko, Y. Convolution series and the generalized convolution Taylor formula. Fract. Calc. Appl. Anal. 2022, 25, 207–228. [Google Scholar] [CrossRef]
- Hadid, S.B.; Luchko, Y. An operational method for solving fractional differential equations of an arbitrary real order. Panam. Math. J. 1996, 6, 57–73. [Google Scholar]
- Luchko, Y. Fractional Differential Equations with the General Fractional Derivatives of Arbitrary Order in the Riemann–Liouville Sense. Mathematics 2022, 10, 849. [Google Scholar] [CrossRef]
- Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag–Leffler Functions and Their Applications. J. Appl. Math. 2011, 2011, 298628. [Google Scholar] [CrossRef]
- Schilling, R.L.; Song, R.; Vondracek, Z. Bernstein Functions. Theory and Application, 1st. ed.; De Gruyter: Berlin, Germany, 2010. [Google Scholar]
- Kochubei, A.N. General fractional calculus. In Handbook of Fractional Calculus with Applications, Volume 1: Basic Theory; Kochubei, A., Luchko, Y., Eds.; De Gruyter: Berlin, Germany, 2019; pp. 111–126. [Google Scholar]
- Luchko, Y.; Yamamoto, M. General time-fractional diffusion equation: Some uniqueness and existence results for the initial-boundary-value problems. Fract. Calc. Appl. Anal. 2016, 19, 675–695. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkandari, M.; Loutchko, D.; Luchko, Y. Anomalous Diffusion Models Involving Regularized General Fractional Derivatives with Sonin Kernels. Fractal Fract. 2025, 9, 363. https://doi.org/10.3390/fractalfract9060363
Alkandari M, Loutchko D, Luchko Y. Anomalous Diffusion Models Involving Regularized General Fractional Derivatives with Sonin Kernels. Fractal and Fractional. 2025; 9(6):363. https://doi.org/10.3390/fractalfract9060363
Chicago/Turabian StyleAlkandari, Maryam, Dimitri Loutchko, and Yuri Luchko. 2025. "Anomalous Diffusion Models Involving Regularized General Fractional Derivatives with Sonin Kernels" Fractal and Fractional 9, no. 6: 363. https://doi.org/10.3390/fractalfract9060363
APA StyleAlkandari, M., Loutchko, D., & Luchko, Y. (2025). Anomalous Diffusion Models Involving Regularized General Fractional Derivatives with Sonin Kernels. Fractal and Fractional, 9(6), 363. https://doi.org/10.3390/fractalfract9060363