Extremal Solutions for a Caputo-Type Fractional-Order Initial Value Problem
Abstract
1. Introduction
2. Preliminaries
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agarwal, R.P.; Golev, A.; Hristova, S.; O’Regan, D.; Stefanova, K. Iterative techniques with computer realization for the initial value problem for Caputo fractional differential equations. J. Appl. Math. Comput. 2018, 58, 433–467. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, L.; Sun, S. The uniqueness of solution for initial value problems for fractional differential equation involving the Caputo-Fabrizio derivative. J. Nonlinear Sci. Appl. 2018, 11, 428–436. [Google Scholar] [CrossRef]
- Alsaedi, A.; Ahmad, B.; Alghanmi, M. Extremal solutions for generalized Caputo fractional differential equations with Steiltjes-type fractional integro-initial conditions. Appl. Math. Lett. 2019, 91, 113–120. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Wang, Y.; Yang, Y. Positive solutions for Caputo fractional differential equations involving integral boundary conditions. J. Nonlinear Sci. Appl. 2015, 8, 99–109. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Golev, A.; Hristova, S.; O’Regan, D.; Stefanova, K. Iterative techniques with initial time difference and computer realization for the initial value problem for Caputo fractional differential equations. Mem. Differ. Equ. Math. Phys. 2017, 72, 1–14. [Google Scholar]
- Agarwal, R.P.; Hristova, S.; O’Regan, D. Iterative techniques for the initial value problem for Caputo fractional differential equations with non-instantaneous impulses. Appl. Math. Comput. 2018, 334, 407–421. [Google Scholar] [CrossRef]
- Ait Mohammed, H.; El-Hadi Mezabia, M.; Tellab, B.; Amara, A.; Emadifar, H. Analysis of Caputo fractional variable order multi-point initial value problems: Existence, uniqueness, and stability. Bound. Value Probl. 2024, 127, 1–28. [Google Scholar] [CrossRef]
- Alikhani, R.; Ganjeh-Alamdari, M. Fully fuzzy initial value problem of Caputo-Fabrizio fractional differential equations. Comput. Methods Differ. Equ. 2023, 11, 440–463. [Google Scholar]
- Eloe, P.W.; Masthay, T. Initial value problems for Caputo fractional differential equations. J. Fract. Calc. Appl. 2018, 9, 178–195. [Google Scholar]
- Giribabu, N.; Vasundhara Devi, J.; Deekshitulu, G.V.S.R. The method of upper and lower solutions for initial value problem of Caputo fractional differential equations with variable moments of impulse. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 2017, 24, 41–54. [Google Scholar]
- Giribabu, N.; Vasundhara Devi, J.; Deekshitulu, G.V.S.R. Monotone iterative technique for Caputo fractional differential equations with variable moments of impulse. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 2017, 24, 25–48. [Google Scholar]
- Guezane-Lakoud, A.; Khaldi, R. Upper and lower solutions method for higher order fractional initial value problems. J. Dyn. Syst. Geom. Theor. 2017, 15, 29–35. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, Y. Comparison principles for fractional differential equations with the Caputo derivatives. Adv. Differ. Equ. 2018, 237, 1–11. [Google Scholar] [CrossRef]
- Diego Ramírez, J.; Vatsala, A.S. Generalized monotone iterative techniques for Caputo fractional integro-differential equations with initial condition. Neural Parallel Sci. Comput. 2015, 23, 219–237. [Google Scholar]
- Salim, A.; Benchohra, M.; Lazreg, J.E.; Nieto, J.J.; Zhou, Y. Nonlocal initial value problem for hybrid generalized Hilfer-type fractional implicit differential equations. Nonauton. Dyn. Syst. 2021, 8, 87–100. [Google Scholar] [CrossRef]
- Shaikh, A.S.; Sontakke, B.R. Impulsive initial value problems for a class of implicit fractional differential equations. Comput. Methods Differ. Equ. 2020, 8, 141–154. [Google Scholar]
- Souahi, A.; Guezane-Lakoud, A.; Khaldi, R. On a fractional higher order initial value problem. J. Appl. Math. Comput. 2018, 56, 289–300. [Google Scholar] [CrossRef]
- Viji, J.; Muthulakshmi, V.; Kumar, P. Oscillatory behavior of Ψ-Hilfer generalized proportional fractional initial value problems. Math. Methods Appl. Sci. 2025, 48, 4460–4476. [Google Scholar] [CrossRef]
- Webb, J.R.L. Initial value problems for Caputo fractional equations with singular nonlinearities. Electron. J. Differ. Equ. 2019, 117, 1–32. [Google Scholar]
- Zhang, S.; Li, S.; Hu, L. The existeness and uniqueness result of solutions to initial value problems of nonlinear diffusion equations involving with the conformable variable derivative. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2019, 113, 1601–1623. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Hu, L. On definition of solution of initial value problem for fractional differential equation of variable order. AIMS Math. 2021, 6, 6845–6867. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Wang, T.; O’Regan, D.; Xu, J. Extremal Solutions for a Caputo-Type Fractional-Order Initial Value Problem. Fractal Fract. 2025, 9, 308. https://doi.org/10.3390/fractalfract9050308
Zhang K, Wang T, O’Regan D, Xu J. Extremal Solutions for a Caputo-Type Fractional-Order Initial Value Problem. Fractal and Fractional. 2025; 9(5):308. https://doi.org/10.3390/fractalfract9050308
Chicago/Turabian StyleZhang, Keyu, Tian Wang, Donal O’Regan, and Jiafa Xu. 2025. "Extremal Solutions for a Caputo-Type Fractional-Order Initial Value Problem" Fractal and Fractional 9, no. 5: 308. https://doi.org/10.3390/fractalfract9050308
APA StyleZhang, K., Wang, T., O’Regan, D., & Xu, J. (2025). Extremal Solutions for a Caputo-Type Fractional-Order Initial Value Problem. Fractal and Fractional, 9(5), 308. https://doi.org/10.3390/fractalfract9050308