Improved High-Order Difference Scheme for the Conservation of Mass and Energy in the Two-Dimensional Spatial Fractional Schrödinger Equation
Abstract
1. Introduction
2. Construction of the High-Order Numerical Scheme
3. Theoretical Analysis of the Constructed Difference Scheme
4. Numerical Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, S.; Du, R.; Zhang, W. Energy-preserving algorithms for fractional nonlinear wave equations. Commun. Comput. Phys. 2022, 30, 1229–1253. [Google Scholar]
- Mustapha, K.; Alharbi, B.; Furihata, D. An adaptive time-stepping method for distributed-order differential equations. SIAM J. Numer. Anal. 2023, 61, 547–569. [Google Scholar]
- Wang, L.; Liu, Q.; Xu, Z. Implicit-explicit schemes for time-fractional reaction-diffusion equations. Numer. Methods Partial Differ. Equ. 2019, 35, 1129–1148. [Google Scholar]
- Zhuang, P.; Liu, F.; Anh, V. Predictor-corrector methods for nonlinear fractional integro-differential equations. Math. Comp. Simul. 2024, 205, 743–763. [Google Scholar]
- Zhao, Y.; Tang, J.; Deng, S. High-order ADI schemes for two-dimensional fractional Schrödinger equations. Appl. Numer. Math. 2020, 148, 201–219. [Google Scholar]
- Al-Maskari, M.; Karaa, S. Mixed finite element methods for fractional Stokes equations. J. Sci. Comput. 2023, 92, 89. [Google Scholar]
- Li, C.; Zeng, F.; Jiang, X. A Petrov-Galerkin method for fractional optimal control problems. Comput. Math. Appl. 2021, 79, 1582–1601. [Google Scholar]
- Li, H.; Chen, X.; Wei, M. A fast spectral method for space-fractional diffusion equations in unbounded domains. J. Comput. Phys. 2018, 375, 1355–1373. [Google Scholar]
- Bueno-Orovio, A.; González, J.A.; Podlubny, I. Matrix approach to discrete fractional calculus with applications to cardiac electrophysiology. Fract. Calc. Appl. Anal. 2024, 27, 362–384. [Google Scholar]
- Sadek, L.; Baleanu, D.; Abdo, M.S.; Shatanawi, W. Introducing novel Θ-fractional operators: Advances in fractional calculus. J. King Saud Univ.-Sci. 2024, 36, 103352. [Google Scholar] [CrossRef]
- Sadek, L. Control theory for fractional differential Sylvester matrix equations with Caputo fractional derivative. J. Vib. Control 2024, 10775463241246430. [Google Scholar] [CrossRef]
- Sadek, L.; Sami Bataineh, A. The general Bernstein function: Application to χ-fractional differential equations. Math. Methods Appl. Sci. 2024, 47, 6117–6142. [Google Scholar] [CrossRef]
- Sadek, L. The methods of fractional backward differentiation formulas for solving two-term fractional differential Sylvester matrix equations. Appl. Set-Valued Anal. Optim. 2024, 6, 137–155. [Google Scholar]
- Wang, P.; Huang, C. An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J. Comput. Phys. 2015, 293, 238–251. [Google Scholar] [CrossRef]
- Wang, P.; Huang, C.; Zhao, L. Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation. J. Comput. Appl. Math. 2016, 306, 231–247. [Google Scholar] [CrossRef]
- Shen, J.; Xu, J. Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 2018, 56, 2895–2912. [Google Scholar] [CrossRef]
- Li, X.; Wen, J.; Li, D. Mass- and energy-conserving difference schemes for nonlinear fractional Schrödinger equations. Appl. Math. Lett. 2021, 111, 106686. [Google Scholar] [CrossRef]
- Duo, S.; Zhang, Y. Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation. Comput. Math. Appl. 2016, 71, 2257–2271. [Google Scholar] [CrossRef]
- Li, M.; Huang, C.; Wang, P. Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer. Algorithms 2017, 74, 499–525. [Google Scholar] [CrossRef]
- Wang, D.; Xiao, A.; Yang, W. Maximum-norm error analysis of a difference scheme for the space fractional CNLS. Appl. Math. Comput. 2015, 257, 241–251. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, Z.; Hao, Z. A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J. Sci. Comput. 2014, 36, A2865–A2886. [Google Scholar] [CrossRef]
- Wang, Y.; Mei, L.; Li, Q.; Bu, L. Split-step spectral Galerkin method for the two-dimensional nonlinear space-fractional Schrödinger equation. Appl. Numer. Math. 2019, 136, 257–278. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Wang, Z.; Chen, B.; Zhang, Y. A conservative numerical method for the fractional nonlinear Schrödinger equation in two dimensions. Sci. China Math. 2019, 62, 1997–2014. [Google Scholar] [CrossRef]
- Hu, D.; Cai, W.; Wang, Y. Two linearly implicit energy preserving exponential scalar auxiliary variable approaches for multi-dimensional fractional nonlinear Schrödinger equations. Appl. Math. Lett. 2021, 122, 107544. [Google Scholar] [CrossRef]
- Wang, N.; Huang, C. An efficient split-step quasi-compact finite difference method for the nonlinear fractional Ginzburg-Landau equations. Comput. Math. Appl. 2018, 75, 2223–2242. [Google Scholar] [CrossRef]
h | Maximum Absolute Errors | Convergence Orders | |
---|---|---|---|
5.869713 × | — | ||
2.792955 × | 4.0736 | ||
1.493018 × | 4.0629 | ||
8.687830 × | 4.0549 | ||
5.392700 × | 4.0488 | ||
1.497645 × | — | ||
7.384049 × | 3.8786 | ||
4.047813 × | 3.8997 | ||
2.399977 × | 3.9146 | ||
1.511485 × | 3.9256 | ||
3.356549 × | — | ||
1.654048 × | 3.8815 | ||
9.063573 × | 3.9023 | ||
5.372170 × | 3.9169 | ||
3.382494 × | 3.9277 | ||
6.552095 × | — | ||
3.217388 × | 3.9009 | ||
1.758679 × | 3.9183 | ||
1.040516 × | 3.9305 | ||
6.542308 × | 3.9395 | ||
1.167460 × | — | ||
5.713168 × | 3.9197 | ||
3.115434 × | 3.9338 | ||
1.839972 × | 3.9438 | ||
1.155316 × | 3.9511 | ||
1.954096 × | — | ||
9.533607 × | 3.9364 | ||
5.187624 × | 3.9477 | ||
3.058942 × | 3.9557 | ||
1.918356 × | 3.9615 | ||
3.126458 × | — | ||
1.521159 × | 3.9514 | ||
8.261266 × | 3.9603 | ||
4.864358 × | 3.9664 | ||
3.047202 × | 3.9710 | ||
4.835271 × | — | ||
2.346630 × | 3.9653 | ||
1.272152 × | 3.9719 | ||
7.480633 × | 3.9764 | ||
4.681285 × | 3.9797 | ||
7.283749 × | — | ||
3.526410 × | 3.9785 | ||
1.908465 × | 3.9830 | ||
1.120801 × | 3.9860 | ||
7.006880 × | 3.9881 | ||
1.074528 × | — | ||
5.190008 × | 3.9915 | ||
2.804060 × | 3.9939 | ||
1.644688 × | 3.9954 | ||
1.027196 × | 3.9965 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Ding, H. Improved High-Order Difference Scheme for the Conservation of Mass and Energy in the Two-Dimensional Spatial Fractional Schrödinger Equation. Fractal Fract. 2025, 9, 280. https://doi.org/10.3390/fractalfract9050280
Tian J, Ding H. Improved High-Order Difference Scheme for the Conservation of Mass and Energy in the Two-Dimensional Spatial Fractional Schrödinger Equation. Fractal and Fractional. 2025; 9(5):280. https://doi.org/10.3390/fractalfract9050280
Chicago/Turabian StyleTian, Junhong, and Hengfei Ding. 2025. "Improved High-Order Difference Scheme for the Conservation of Mass and Energy in the Two-Dimensional Spatial Fractional Schrödinger Equation" Fractal and Fractional 9, no. 5: 280. https://doi.org/10.3390/fractalfract9050280
APA StyleTian, J., & Ding, H. (2025). Improved High-Order Difference Scheme for the Conservation of Mass and Energy in the Two-Dimensional Spatial Fractional Schrödinger Equation. Fractal and Fractional, 9(5), 280. https://doi.org/10.3390/fractalfract9050280