Fractional Operator Approach and Hybrid Special Polynomials: The Generalized Gould–Hopper–Bell-Based Appell Polynomials and Their Characteristics
Abstract
1. Introduction
2. The Generalized Gould–Hopper–Bell–Appell Polynomials
3. Operational and Determinant Representations
4. Special Members of the GGHBelAP
4.1. The Generalized Gould–Hopper–Bell–Bernoulli Polynomials
4.2. Generalized Gould–Hopper–Bell–Euler Polynomials
4.3. Generalized Gould–Hopper–Bell–Genocchi Polynomials
5. Computational and Graphical Representations
- The GGHBelBP of degree δ possess exactly δ zeros.
- Altering the variables, parameters, or indices generates distinct zero distributions and varied graphical configurations.
- The zeros (complex zeros) of GGHBelBP exhibit symmetry about the real axis.
- Fractional Differential Equations: These polynomials can act as effective basis functions for solving fractional PDEs that emerge in diverse scientific and engineering contexts.
- Interdisciplinary Relevance: The results intersect with probability theory (through links to Bell polynomials) and combinatorics (via generating functions). Broader implications extend to domains such as fractional control theory and signal processing.
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gould, H.W.; Hopper, A.T. Operational formulas connected with two generalizations of Hermite polynomials. Duke Math. J. 1962, 29, 51–63. [Google Scholar] [CrossRef]
- Appell, P.; Kampé de Fériet, J. Fonctions Hypergéométriques et Hypersphériques; Polynômes d’Hermite; Gauthier-Villars: Paris, France, 1926. [Google Scholar]
- Duran, U.; Araci, S.; Acikgoz, M. Bell-based Bernoulli polynomials with applications. Axioms 2021, 10, 29. [Google Scholar] [CrossRef]
- Carlitz, L. Some Remarks on the Bell numbers. Fibonacci Quart. 1980, 18, 66–73. [Google Scholar] [CrossRef]
- Andrews, L.C. Special Functions for Engineers and Applied Mathematics; Macmillan Publishing Company: New York, NY, USA, 1985. [Google Scholar]
- Anshelevich, M. Appell polynomials and their relatives III. Conditionally free theory. Ill. J. Math. 2009, 53, 39–66. [Google Scholar] [CrossRef]
- Salminen, P. Optimal stopping, Appell polynomials and Wiener–Hopf factorization. Int. J. Probab. Stoch. Process. 2011, 83, 611–622. [Google Scholar] [CrossRef]
- Malonek, H.R.; Falcão, M.I. 3D-mappings using monogenic functions. In Numerical Analysis and Applied Mathematics-ICNAAM 2006; Simos, T.E., Psihoyios, G., Tsitouras, C., Eds.; Wiley: Weinheim, Germany, 2006; pp. 615–619. [Google Scholar]
- Brackx, F.; De Schepper, H.; Lávička, R.; Soucek, V. Gel’fand-Tsetlin Procedure for the Construction of Orthogonal Bases in Hermitean Clifford Analysis. In Numerical Analysis and Applied Mathematics-ICNAAM 2010; Simos, T.E., Psihoyios, G., Tsitouras, C., Eds.; AIP Conference Proceedings, Volume 1281; American Institute of Physics (AIP): Melville, NY, USA, 2010; pp. 1508–1511. [Google Scholar]
- Lávička, R. Canonical bases for sl (2, C)-modules of spherical monogenics in dimension 3. Arch. Math. Tomus 2010, 46, 339–349. [Google Scholar]
- Weinberg, S.T. The Quantum Theory of Fields; Cambridge University Press: Cambridge, UK, 1995; Volume 1. [Google Scholar]
- Fadel, M.; Alatawi, M.S.; Khan, W.A. Two-variable q-Hermite-based Appell polynomials and their applications. Mathematics 2024, 12, 1358. [Google Scholar] [CrossRef]
- Alyusof, R.; Wani, S.A. Certain properties and applications of μh hybrid special polynomials associated with Appell sequences. Fractal Fract. 2023, 7, 233. [Google Scholar] [CrossRef]
- Alam, N.; Wani, S.A.; Khan, W.A.; Zaidi, H.N. Investigating the Properties and Dynamic Applications of μh Legendre–Appell Polynomials. Mathematics 2024, 12, 1973. [Google Scholar] [CrossRef]
- Zayed, M.; Wani, S.A.; Mahnashi, A.M. Certain properties and characterizations of multivariable Hermite-Based Appell polynomials via factorization method. Fractal Fract. 2023, 7, 605. [Google Scholar] [CrossRef]
- Yasmin, G.; Muhyi, A.; Araci, S. Certain results of q-Sheffer–Appell polynomials. Symmetry 2019, 11, 159. [Google Scholar] [CrossRef]
- Muhyi, A.; Araci, S. A Note on q-Fubini-Appell Polynomials and Related Properties. J. Funct. Spaces 2021, 2021, 3805809. [Google Scholar] [CrossRef]
- Fadel, M.; Muhyi, A. On a family of q-modified-Laguerre-Appell polynomials. Arab J. Basic Appl. Sci. 2024, 31, 165–176. [Google Scholar] [CrossRef]
- Khan, S.; Yasmin, G.; Ahmad, N. A note on truncated exponential-Based Appell polynomials. Bull. Malays. Math. Sci. Soc. 2017, 40, 373–388. [Google Scholar] [CrossRef]
- Khan, S.; Raza, N.; Ali, M. Finding mixed families of special polynomials associated with Appell sequences. J. Math. Anal. Appl. 2017, 447, 398–418. [Google Scholar] [CrossRef]
- Yasmin, G.; Muhyi, A. Certain results of hybrid families of special polynomials associated with Appell sequences. Filomat 2019, 33, 3833–3844. [Google Scholar] [CrossRef]
- Yasmin, G.; Ryoo, C.S.; Islahi, H. A numerical computation of zeros of q-generalized tangent-Appell polynomials. Mathematics 2020, 8, 383. [Google Scholar] [CrossRef]
- Muhyi, A. A Note on Generalized Bell-Appell Polynomials. Adv. Anal. Appl. Math. 2024, 1, 90–100. [Google Scholar] [CrossRef]
- Özat, Z.; Özarslan, M.A.; Çekim, B. On Bell based Appell polynomials. Turk. J. Math. 2023, 47, 1099–1128. [Google Scholar] [CrossRef]
- Khan, S.; Raza, N. General-Appell polynomials within the context of monomiality principle. Int. J. Anal. 2013, 2013, 328032. [Google Scholar] [CrossRef]
- Al-Jawfi, R.A.; Muhyi, A.; Al-shameri, W.F.H. On generalized class of Bell polynomials associated with geometric applications. Axioms 2024, 13, 73. [Google Scholar] [CrossRef]
- Assante, D.; Cesarano, C.; Fornaro, C.; Vazquez, L. Higher order and fractional diffusive equations. J. Eng. Sci. Technol. Rev. 2015, 8, 202–204. [Google Scholar] [CrossRef]
- Dattoli, G. Operational methods, fractional operators and special polynomials. Appl. Math. Comput. 2003, 141, 151–159. [Google Scholar] [CrossRef]
- Dattoli, G.; Ricci, P.E.; Cesarano, C.; Vazquez, L. Special polynomials and fractional calculus. Math. Comput. Model. 2003, 37, 729–733. [Google Scholar] [CrossRef]
- Khan, S.; Wani, S.A. Extended Laguerre-Appell polynomials via fractional operators and their determinant forms. Turk. J. Math. 2018, 42, 1686–1697. [Google Scholar] [CrossRef]
- Yasmin, G.; Muhyi, A. Extended forms of Legendre-Gould-Hopper-Appell polynomials. Adv. Stud. Contemp. Math. 2019, 29, 489–504. [Google Scholar]
- Khan, S.; Wani, S.A.; Riyasat, M. Study of generalized Legendre-Appell polynomials via fractional operators. TWMS J. Pure Appl. Math. 2020, 11, 144–156. [Google Scholar]
- Srivastava, H.M.; Manocha, H.L. A Trestise on Generating Functions; Halested Press-Ellis Horwood Limited-Jon Wiely and Sons: New York, NY, USA; Chichester, UK; Srisbane, QLD, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
- Özarslan, M.A. Unified Apostol-Bernoulli, Euler and Genocchi polynomials. Comput. Math. Appl. 2011, 62, 2452–2462. [Google Scholar] [CrossRef]
- Khan, N.; Husain, S. Analysis of Bell based Euler polynomials and their application. Int. J. Appl. Comput. Math. 2021, 7, 195. [Google Scholar] [CrossRef]
- Duran, U.; Acikgoz, M. Bell-based Genocchi polynomials. New Trends Math. Sci. 2021, 9, 50–55. [Google Scholar] [CrossRef]
- Bildirici, C.; Acikgoz, M.; Araci, S. A note on analogues of tangent polynomials. J. Algebra Number Theory Acad. 2014, 4, 21–29. [Google Scholar]
- Costabile, F.A.; Longo, E. A determinantal approach to Appell polynomials. J. Comput. Appl. Math. 2010, 234, 1528–1542. [Google Scholar] [CrossRef]
- Costabile, F.A.; Dell’ Accio, F.; Gualtieri, M.I. A new approach to Bernoulli polynomials. Rend. Mat. Appl. 2006, 26, 1–12. [Google Scholar]
- Leinartas, E.; Shishkina, O. The Euler-Maclaurin Formula in the Problem of Summation over Lattice Points of a Simplex. J. Sib. Fed. Univ. Math. Phys. 2022, 15, 108–113. [Google Scholar] [CrossRef]
S.No. | Polynomials | Generating Function | |
---|---|---|---|
I. | Gould–Hopper–Bell–Bernoulli | ||
polynomials | |||
II. | Gould–Hopper–Bell–Euler | ||
polynomials | |||
III. | Gould–Hopper–Bell–Genocchi | ||
polynomials |
Generating function | |
Series representations | |
Summation formulas | |
Operational representations | |
Generating function | |
Series representations | |
Summation formulas | |
Operational representations | |
Generating function | |
Series representations | |
Summation formulas | |
Operational representations | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidaoui, R.; Hassan, E.I.; Muhyi, A.; Aldwoah, K.; Alfedeel, A.H.A.; Mohamed, K.S.; Adam, A. Fractional Operator Approach and Hybrid Special Polynomials: The Generalized Gould–Hopper–Bell-Based Appell Polynomials and Their Characteristics. Fractal Fract. 2025, 9, 281. https://doi.org/10.3390/fractalfract9050281
Sidaoui R, Hassan EI, Muhyi A, Aldwoah K, Alfedeel AHA, Mohamed KS, Adam A. Fractional Operator Approach and Hybrid Special Polynomials: The Generalized Gould–Hopper–Bell-Based Appell Polynomials and Their Characteristics. Fractal and Fractional. 2025; 9(5):281. https://doi.org/10.3390/fractalfract9050281
Chicago/Turabian StyleSidaoui, Rabeb, E. I. Hassan, Abdulghani Muhyi, Khaled Aldwoah, A. H. A. Alfedeel, Khidir Shaib Mohamed, and Alawia Adam. 2025. "Fractional Operator Approach and Hybrid Special Polynomials: The Generalized Gould–Hopper–Bell-Based Appell Polynomials and Their Characteristics" Fractal and Fractional 9, no. 5: 281. https://doi.org/10.3390/fractalfract9050281
APA StyleSidaoui, R., Hassan, E. I., Muhyi, A., Aldwoah, K., Alfedeel, A. H. A., Mohamed, K. S., & Adam, A. (2025). Fractional Operator Approach and Hybrid Special Polynomials: The Generalized Gould–Hopper–Bell-Based Appell Polynomials and Their Characteristics. Fractal and Fractional, 9(5), 281. https://doi.org/10.3390/fractalfract9050281