Static Shift Correction and Fractal Characteristic Analysis of Time-Frequency Electromagnetic Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Principle of Static Shift Effects
2.2. Time-Frequency Electromagnetic Static Shift Correction Method
2.3. Multifractal Analysis of Electromagnetic Anomalies
3. Results
3.1. Example of Static Shift Correction in a Theoretical Model
3.2. Example of Static Shift Correction on Measured Data
3.3. Multifractal Spectrum Analysis of Electric Field in a Simple Electrical Model
3.4. Multifractal Feature Analysis of Field Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jones, A.G. Static shift of magnetotelluric data and its removal in a sedimentary basin environment. Geophysics 1988, 53, 967–978. [Google Scholar] [CrossRef]
- Ogawa, Y. On two-dimensional modeling of magnetotelluric field data. Surv. Geophys. 2002, 23, 251–273. [Google Scholar] [CrossRef]
- Singer, B.S. Correction for distortions of magnetotelluric fields: Limits of validity of the static approach. Surv. Geophys. 1992, 13, 309–340. [Google Scholar] [CrossRef]
- da Silva, M.A.S.; Nobrega, F.A.C.; do Carmo, F.F.; do Nascimento, J.P.C.; Nogueira, F.E.A.; Sales, A.J.M.; Sombra, A.S.B. Investigation of dielectric properties of a Li4Ti5O12 ceramic matrix for microwave temperature sensing applications. J. Austr. Ceram. Soc. 2024, 60, 355–362. [Google Scholar] [CrossRef]
- Jabarov, S.H.; Nabiyeva, A.K.; Samadov, S.F.; Abiyev, A.S.; Sidorin, A.A.; Trung, N.V.M.; Orlov, O.S.; Mauyey, B.; Trukhanov, S.V.; Trukhanov, A.V. Study of defects formation mechanism in La1−xBaxMnO3 perovskite manganite by positron annihilation lifetime and Doppler broadening spectroscopy. Solid State Ion. 2024, 414, 116640. [Google Scholar] [CrossRef]
- Bostick, F.X., Jr. Electromagnetic array profiling (EMAP). In Proceedings of the SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 1986; pp. 60–61. [Google Scholar]
- Schultz, A.; Kurtz, R.D.; Chave, A.D.; Jones, A.G. Conductivity discontinuities in the upper mantle beneath a stable craton. Geophys. Res. Lett. 1993, 20, 2941–2944. [Google Scholar] [CrossRef]
- Tournerie, B.; Chouteau, M. Analysis of magnetotelluric data along the Lithoprobe seismic line 21 in the Blake River Group, Abitibi, Canada. Earth Planets Space 2002, 54, 575–589. [Google Scholar] [CrossRef]
- Torres-Verdin, C.; Bostick, F.X., Jr. Implications of the Born approximation for the magnetotelluric problem in three-dimensional environments. Geophysics 1992, 57, 587–602. [Google Scholar] [CrossRef]
- Andrieux, P.; Wightman, W. (Eds.) The so-called static corrections in magnetotelluric measurements. In Proceedings of the SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 1984; pp. 43–44. [Google Scholar]
- Pellerin, L.; Hohmann, G.W. Transient electromagnetic inversion: A remedy for magnetotelluric static shifts. Geophysics 1990, 55, 1242–1250. [Google Scholar] [CrossRef]
- Sternberg, B.K.; Washburne, J.C.; Pellerin, L. Correction for the static shift in magnetotellurics using transient electromagnetic soundings. Geophysics 1988, 53, 1459–1468. [Google Scholar] [CrossRef]
- Zhang, P.; Chouteau, M.; Mareschal, M.; Kurtz, R.; Hubert, C. High-frequency magnetotelluric investigation of crustal structure in north-central Abitibi, Quebec, Canada. Geophys. J. Int. 1995, 120, 406–418. [Google Scholar] [CrossRef]
- Tournerie, B.; Chouteau, M.; Marcotte, D. Magnetotelluric static shift: Estimation and removal using the cokriging method. Geophysics 2007, 72, F25–F34. [Google Scholar] [CrossRef]
- Zhanxiang, H.; Zhi, Z.; Haiying, L.; Jinchen, Q. TFEM for oil detection: Case studies. Lead. Edge 2012, 31, 518–521. [Google Scholar] [CrossRef]
- Zhanxiang, H.; Xiaodong, S.; Zuzhi, H.; Yanling, S.; Dongyang, S.; Weibin, D. Time-frequency electromagnetic method for exploring favorable deep igneous rock targets: A case study from north Xinjiang. J. Environ. Eng. Geophys. 2019, 24, 215–224. [Google Scholar] [CrossRef]
- Li, Z.Q.; Fu, G.Q.; Tan, S.Q.; Chen, X.G.; Guo, T.; Xiang, P.; Yang, Y.H.; He, Z.X. Calculation and application of apparent resistivity in the frequency domain by TFEM. Appl. Geophys. 2024, 21, 409–417. [Google Scholar] [CrossRef]
- Weibin, D.; Xiaoming, Z.; Fang, L.; Guo, Z. The time-frequency electromagnetic method and its application in western China. Appl. Geophys. 2008, 5, 127–135. [Google Scholar] [CrossRef]
- Zhang, C.H.; Liu, X.J.; He, L.F.; He, W.H.; Zhou, Y.M.; Zhu, Y.S.; Cui, Z.W.; Kuang, X.H. A study of exploration organic rich shales using Time-Frequency Electromagnetic Method (TFEM). Chin. J. Geophys. 2013, 56, 3173–3183. [Google Scholar]
- Zhao, Z.; He, Z.X.; Li, D.C.; Yang, S.J.; Liu, X.J.; Li, T.B. Detecting favorable oil and gas targets with time-frequency electromagnetic method—Case studies. In Proceedings of the 72nd EAGE Conference and Exhibition incorporating SPE EUROPEC 2010, Amsterdam, The Netherlands, 23–26 June 2010; cp-161. [Google Scholar]
- Asrillah, A.; Abdullah, A.; Bauer, K.; Norden, B.; Krawczyk, C.M. Fracture characterisation using 3-D seismic reflection data for advanced deep geothermal exploration in the NE German Basin. Geothermics 2024, 116, 102833. [Google Scholar] [CrossRef]
- Gaci, S.; Nicolis, O. A grey system approach for estimating the hölderian regularity with an application to Algerian well log data. Fractal Fract. 2021, 5, 86. [Google Scholar] [CrossRef]
- Turcotte, D.L. Fractals and Chaos in Geology and Geophysics, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Zeng, X.; Liu, T.; Tan, X.; Zhang, Y.; Li, X. Automatic determination of the cut-off wavenumber for downward continuation of potential field based on fractal radial spectrum. Prog. Geophys. 2024, 39, 403–411. [Google Scholar]
- Zhang, X.; Li, D.; Li, J.; Liu, B.; Jiang, Q.; Wang, J. Signal-noise identification for wide field electromagnetic method data using multi-domain features and IGWO-SVM. Fractal Fract. 2022, 6, 80. [Google Scholar] [CrossRef]
- Halsey, T.C.; Jensen, M.H.; Kadanoff, L.P.; Procaccia, I.; Shraiman, B.I. Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A 1986, 33, 1141. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y.; Jiang, Q.; Qiao, Y.; Zhao, Y.; He, Z. Static Shift Correction and Fractal Characteristic Analysis of Time-Frequency Electromagnetic Data. Fractal Fract. 2025, 9, 240. https://doi.org/10.3390/fractalfract9040240
Hou Y, Jiang Q, Qiao Y, Zhao Y, He Z. Static Shift Correction and Fractal Characteristic Analysis of Time-Frequency Electromagnetic Data. Fractal and Fractional. 2025; 9(4):240. https://doi.org/10.3390/fractalfract9040240
Chicago/Turabian StyleHou, Yujian, Qiyun Jiang, Yan Qiao, Yunsheng Zhao, and Zhanxiang He. 2025. "Static Shift Correction and Fractal Characteristic Analysis of Time-Frequency Electromagnetic Data" Fractal and Fractional 9, no. 4: 240. https://doi.org/10.3390/fractalfract9040240
APA StyleHou, Y., Jiang, Q., Qiao, Y., Zhao, Y., & He, Z. (2025). Static Shift Correction and Fractal Characteristic Analysis of Time-Frequency Electromagnetic Data. Fractal and Fractional, 9(4), 240. https://doi.org/10.3390/fractalfract9040240