A Fractional Dirac System with Eigenparameter-Dependent and Transmission Conditions
Abstract
1. Introduction
2. Fractional Calculus
3. Hilbert Space Formulation and Spectral Properties of the Operator
4. The Existence of Solutions to Fractional Dirac System
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klimek, M.; Agrawal, O.P. Fractional Sturm-Liouville problem. Comput. Math. Appl. 2013, 66, 795–812. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Application of Fractional Differential Equations; Elsevier B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2004; pp. 3–93. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley-Interscience: Hoboken, NJ, USA, 1993. [Google Scholar]
- Dehghan, M.; Mingarelli, A.B. Fractional Sturm—Liouville eigenvalue problems, I. RACSAM 2020, 114, 46. [Google Scholar]
- Dehghan, M.; Mingarelli, A.B. Fractional Sturm—Liouville eigenvalue problems, II. Fractal Fract. 2022, 6, 487. [Google Scholar] [CrossRef]
- Al-Mdallal, Q.M. An efficient method for solving fractional Sturm—Liouville problems. Chaos Solitons Fractals 2009, 40, 183–189. [Google Scholar] [CrossRef]
- Al-Mdallal, Q.M. On the numerical solution of fractional Sturm—Liouville problems. Int. J. Comput. Math. 2010, 87, 2837–2845. [Google Scholar]
- Ertürk, V.S. Computing eigenelements of Sturm—Liouville problems of fractional order via fractional differential transform method. Math. Comput. Appl. 2011, 16, 712–720. [Google Scholar] [CrossRef]
- Rivero, M.; Trujillo, J.J.; Velasco, M. A fractional approach to the Sturm—Liouville problem. Open Phys. 2013, 11, 1246–1254. [Google Scholar] [CrossRef]
- Akdoğan, Z.; Yakar, A.; Demirci, M. Discontinuous fractional Sturm—Liouville problems with transmission conditions. Appl. Math. Comput. 2019, 350, 1–10. [Google Scholar]
- Yakar, A.; Akdogan, Z. On the fundamental solutions of a discontinuous fractional boundary value problem. Adv. Differ. Equ. 2017, 2017, 378. [Google Scholar]
- Levitan, B.M.; Sargsjan, I.S.; Hazewinkel, M. Sturm-Liouville and Dirac Operators; Kluwer Academic: Dordrecht, The Netherlands, 1991; Volume 59. [Google Scholar]
- Kerimov, N.B. A boundary value problem for the Dirac system with a spectral parameter in the boundary conditions. Differ. Equ. 2002, 38, 164–174. [Google Scholar]
- Kablan, A.; Özden, T. A Dirac system with transmission condition and eigenparameter in boundary condition. Abstr. Appl. Anal. 2013, 2013, 395457. [Google Scholar]
- Çöl, A. Spectral properties for a system of Dirac equations with nonlinear dependence on the spectral parameter. Demonstr. Math. 2024, 57, 20240022. [Google Scholar]
- Allahverdiev, B.P.; Tuna, H. One-dimensional conformable fractional Dirac system. Boletín Soc. Matemática Mex. 2020, 26, 121–146. [Google Scholar] [CrossRef]
- Allahverdiev, B.P.; Tuna, H.; Isayev, H.A. Fractional Dirac system with impulsive conditions. Chaos Solitons Fractals 2023, 176, 114099. [Google Scholar] [CrossRef]
- Annaby, M.H.; Tharwat, M.M. On the computation of the eigenvalues of Dirac systems. Calcolo 2012, 49, 221–240. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Atangana, A.; Gómez-Aguilar, J.F.; Jarad, F. On a more general fractional integration by parts formulae and applications. Physcia A 2019, 536, 122494. [Google Scholar] [CrossRef]
- Allahverdiev, B.P.; Tuna, H. q-fractional Dirac type systems. Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 2020, 542, 117–130. [Google Scholar]
- Rama Mohana Rao, M. Ordinary Differential Equations-Theory and Applications, 3rd ed.; Edward Arnold: London, UK, 1980. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kablan, A.; Şahantürk, F. A Fractional Dirac System with Eigenparameter-Dependent and Transmission Conditions. Fractal Fract. 2025, 9, 227. https://doi.org/10.3390/fractalfract9040227
Kablan A, Şahantürk F. A Fractional Dirac System with Eigenparameter-Dependent and Transmission Conditions. Fractal and Fractional. 2025; 9(4):227. https://doi.org/10.3390/fractalfract9040227
Chicago/Turabian StyleKablan, Abdullah, and Fulya Şahantürk. 2025. "A Fractional Dirac System with Eigenparameter-Dependent and Transmission Conditions" Fractal and Fractional 9, no. 4: 227. https://doi.org/10.3390/fractalfract9040227
APA StyleKablan, A., & Şahantürk, F. (2025). A Fractional Dirac System with Eigenparameter-Dependent and Transmission Conditions. Fractal and Fractional, 9(4), 227. https://doi.org/10.3390/fractalfract9040227