Multiplicity of Positive Solutions for a Singular Tempered Fractional Initial-Boundary Value Problem with Changing-Sign Perturbation Term
Abstract
1. Introduction
2. Preliminaries and Lemmas
3. Existence Results
4. Multiplicity Results
5. Examples
6. Conclusions
- (i)
- The equation is an initial-boundary value problem containing lower order initial value and higher-order boundary value conditions.
- (ii)
- The changing-sign perturbation term involves a nonlinear p-Laplacian operator.
- (ii)
- The changing-sign perturbation term only satisfies the weaker Carathèodory conditions.
- (iv)
- The perturbation term ℏ can have infinite singular points. Moreover, it can tend to negative infinity in some singular points.
- (v)
- The multiplicity of positive solutions for the target equation is established.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations, in North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar] [CrossRef]
- Zhang, X.; Mao, C.; Liu, L.; Wu, Y. Exact iterative solution for an abstract fractional dynamic system model for bioprocess. Qual. Theory Dyn. Syst. 2017, 16, 205–222. [Google Scholar] [CrossRef]
- He, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. A singular fractional Kelvin-Voigt model involving a nonlinear operator and their convergence properties. Bound. Value Probl. 2019, 2019, 112. [Google Scholar] [CrossRef]
- Meerschaert, M.; Sikorskii, A. Stochastic Models for Fractional Calculus; De Gruyter: Berlin, Germany, 2012. [Google Scholar] [CrossRef]
- Zhang, Y.; Meerschaert, M.; Packman, A.I. Linking fluvial bed sediment transport across scales. Geophys. Res. Lett. 2012, 39, L20404. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, O.E. Processes of normal inverse Gaussian type. Financ. Stoch. 1998, 2, 41–68. [Google Scholar] [CrossRef]
- Sabzikar, F.; Meerschaert, M.; Chen, J. Tempered fractional calculus. J. Comput. Phys. 2015, 293, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Dias, N.; Jorge, C.; Prata, J. Vibration modes of the Euler–Bernoulli beam equation with singularities. J. Differ. Equ. 2024, 381, 185–208. [Google Scholar] [CrossRef]
- Jafari, A.; Sani, A. Free vibration analysis of Euler-Bernoulli beams modeled by spatial-fractional differential equation. Results Eng. 2024, 24, 102972. [Google Scholar] [CrossRef]
- Honegger, R.; Lauxmann, M.; Priwitzer, B. On wave-like differential equations in general Hilbert space with application to Euler–Bernoulli bending vibrations of a beam. Partial. Differ. Equations Appl. Math. 2024, 9, 100617. [Google Scholar] [CrossRef]
- Yu, P.; Pang, Y.; Zhang, S.; Wang, L.; Jin, J. Bending vibration transfer equations of variable-section piezoelectric laminated beams. Compos. Struct. 2023, 312, 116887. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, P.; Tian, H.; Wu, Y. Upper and Lower Solution Method for a Singular Tempered Fractional Equation with a p-Laplacian Operator. Fractal Fract. 2023, 7, 522. [Google Scholar] [CrossRef]
- Gong, R.; Vempati, M.N.; Wu, Q.; Xie, P. Boundedness and compactness of Cauchy-type integral commutator on weighted Morrey spaces. J. Aust. Math. Soc. 2022, 113, 36–56. [Google Scholar] [CrossRef]
- Fu, Z.; Hou, X.; Lee, M.Y.; Li, J. A study of one-sided singular integral and function space via reproducing formula. J. Geom. Anal. 2023, 33, 289. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Q.; Wang, W.; Wu, Q. Atomic decomposition theorem for Hardy spaces on products of Siegel upper half spaces and Bi-parameter Hardy spaces. J Geom Anal. 2023, 33, 351. [Google Scholar] [CrossRef]
- Dang, P.; Du, J.; Qian, T. Riemann boundary value problems for monogenic functions on the hyperplane. Adv. Appl. Clifford Algebr. 2022, 32, 29. [Google Scholar] [CrossRef]
- Wang, X.; Wang, G. Singular Hardy–Adams inequalities on hyperbolic spaces of any even dimension. Ann. Pol. Math. Inst. Mat. Pol. Akad. Nauk. 2022, 129, 175–192. [Google Scholar] [CrossRef]
- Gu, L.; Liu, Y.; Yang, C. Solvability of some Riemann-Hilbert problems related to dirac operator with gradient potential in R3. J. Appl. Anal. Comput. 2024, 14, 976–985. [Google Scholar] [CrossRef]
- Chen, W.; Fu, Z.; Grafakos, L.; Wu, Y. Fractional Fourier transforms on Lp and applications. Appl. Comput. Harmon. Anal. 2021, 55, 71–96. [Google Scholar] [CrossRef]
- Gu, L.; Liu, Y.; Lin, R. Some integral representation formulas and Schwarz lemmas related to perturbed Dirac operators. J. Appl. Anal. Comput. 2022, 12, 2475–2487. [Google Scholar] [CrossRef]
- Fu, Z.; Grafakos, L.; Lin, Y.; Wu, Y.; Yang, S. Riesz transform associated with the fractional Fourier transform and applications in image edge detection. Appl. Comput. Harmon. Anal. 2023, 66, 211–235. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. The existence and nonexistence of entire large solutions for a quasilinear Schrodinger elliptic system by dual approach. J. Math. Anal. Appl. 2018, 464, 1089–1106. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. The convergence analysis and error estimation for unique solution of a p-Laplacian fractional differential equation with singular decreasing nonlinearity. Bound. Value Probl. 2018, 2018, 82. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. A sufficient and necessary condition of existence of blow-up radial solutions for a k-Hessian equation with a nonlinear operator. Nonlinear Anal. Model. Control 2020, 25, 126–143. [Google Scholar] [CrossRef]
- Zhou, J.; Li, H.; Zhang, Z. A posteriori error estimates of spectral approximations for second order partial differential equations in spherical geometries. J. Sci. Comput. 2022, 90, 56. [Google Scholar] [CrossRef]
- Zheng, W.; Chen, Y.; Zhou, J. A Legendre spectral method for multidimensional partial Volterra integro-differential equations. J. Comput. Appl. Math. 2024, 436, 115302. [Google Scholar] [CrossRef]
- Wu, J.; He, X.; Li, X. Finite-time stabilization of time-varying nonlinear systems based on a novel differential inequality approach. Appl. Math. Comput. 2022, 420, 126895. [Google Scholar] [CrossRef]
- Guo, Z.; Jiang, T.; Vasil’ev, V.I.; Wang, G. Complex structure-preserving method for Schrödinger equations in quaternionic quantum mechanics. Numer. Algorithms 2024, 97, 271–287. [Google Scholar] [CrossRef]
- Gu, L.; Liu, Y. Nonlinear Riemann type problems associated to Hermitian Helmholtz equations. Complex Var. Elliptic Equ. 2023, 68, 763–775. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Jia, Z. Global weak solutions for an attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source. Acta Math. Sci. 2024, 44, 909–924. [Google Scholar] [CrossRef]
- Jia, Z. Global boundedness of weak solutions for an attraction-repulsion chemotaxis system with p-Laplacian diffusion and nonlinear production. Discret. Contin. Dyn. Syst.-Ser. B 2023, 28, 4847–4863. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, W. On strongly indefinite schrödinger equations with non-periodic potential. J. Appl. Anal. Comput. 2023, 13, 1–10. [Google Scholar] [CrossRef]
- Ai, B.; Jia, Z. The global existence and boundedness of solutions to a Chemotaxis–Haptotaxis model with nonlinear diffusion and signal production. Mathematics 2024, 12, 2577. [Google Scholar] [CrossRef]
- Ren, T.; Li, S.; Zhang, X.; Liu, L. Maximum and minimum solutions for a nonlocal p-Laplacian fractional differential system from eco-economical processes. Bound. Value Probl. 2017, 2017, 118. [Google Scholar] [CrossRef]
- Fu, Z.; Lu, S.; Shi, S. Two characterizations of central BMO space via the commutators of Hardy operators. Forum Math. Gruyter 2021, 33, 505–529. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Q.; Yang, Y.; Dang, P.; Ren, G. Riemann-Liouville fractional integrals and derivatives on Morrey spaces and applications to a Cauchy-type problem. J. Appl. Anal. Comput. 2024, 14, 1078–1096. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, G. Fractional Adams-Moser-Trudinger type inequality with singular term in Lorentz space and Lp space. J. Appl. Anal. Comput. 2024, 14, 133–145. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, L.; Wang, G. Fractional non-linear regularity, potential and balayage. J. Geom. Anal. 2022, 32, 221. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, L.; Zi, Y.; Li, J. Solvability of fractional differential system with parameters and singular nonlinear terms. AIMS Math. 2024, 9, 22435–22453. [Google Scholar] [CrossRef]
- Shi, S.; Zhai, Z.; Zhang, L. Characterizations of the viscosity solution of a nonlocal and nonlinear equation induced by the fractional p-Laplace and the fractional p-convexity. Adv. Calc. Var. 2023, 17, 195–207. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Y.; Li, C.; Cai, J.; Zhang, B. Solvability for a higher-order Hadamard fractional differential model with a sign-changing nonlinearity dependent on the parameter ϱ. J. Appl. Anal. Comput. 2024, 14, 2762–2776. [Google Scholar] [CrossRef]
- Xue, Y.; Wei, Y. Ground states of nonlocal fractional Schrödinger equations with potentials well. Taiwan. J. Math. 2022, 26, 1203–1217. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, P.; Zhou, W. Two-grid finite element method for time-fractional nonlinear Schrödinger equation. J. Comput. Math. 2024, 42, 1124–1144. [Google Scholar] [CrossRef]
- Aris, R. Introduction to the Analysis of Chemical Reactors; Prentice Hall: Englewood Cliffs, NJ, USA, 1965. [Google Scholar] [CrossRef]
- Wei, S.; Gong, W.; Wu, X.; Zhang, Z. Nonlinear Stress-Free-State Forward Analysis Method of Long-Span Cable-Stayed Bridges Constructed in Stages. Buildings 2023, 13, 1735. [Google Scholar] [CrossRef]
- Zhang, X.; Tain, H.; Wu, Y.; Wiwatanapataphee, B. Existence of positive solutions for third-order semipositone boundary value problems on time scales. Nonlinear Anal. Model. Control 2023, 28, 133–151. [Google Scholar] [CrossRef]
- Zhang, X.; Tain, H.; Wu, Y.; Wiwatanapataphee, B. The radial solution for an eigenvalue problem of singular augmented Hessian equation. Appl. Math. Lett. 2022, 134, 108330. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, P.; Wu, Y. The eigenvalue problem of a singular k-Hessian equation. Appl. Math. Lett. 2022, 124, 107666. [Google Scholar] [CrossRef]
- Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones; Academic Press Inc.: New York, NY, USA, 1988. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Chen, P.; Li, L.; Wu, Y. Multiplicity of Positive Solutions for a Singular Tempered Fractional Initial-Boundary Value Problem with Changing-Sign Perturbation Term. Fractal Fract. 2025, 9, 215. https://doi.org/10.3390/fractalfract9040215
Zhang X, Chen P, Li L, Wu Y. Multiplicity of Positive Solutions for a Singular Tempered Fractional Initial-Boundary Value Problem with Changing-Sign Perturbation Term. Fractal and Fractional. 2025; 9(4):215. https://doi.org/10.3390/fractalfract9040215
Chicago/Turabian StyleZhang, Xinguang, Peng Chen, Lishuang Li, and Yonghong Wu. 2025. "Multiplicity of Positive Solutions for a Singular Tempered Fractional Initial-Boundary Value Problem with Changing-Sign Perturbation Term" Fractal and Fractional 9, no. 4: 215. https://doi.org/10.3390/fractalfract9040215
APA StyleZhang, X., Chen, P., Li, L., & Wu, Y. (2025). Multiplicity of Positive Solutions for a Singular Tempered Fractional Initial-Boundary Value Problem with Changing-Sign Perturbation Term. Fractal and Fractional, 9(4), 215. https://doi.org/10.3390/fractalfract9040215