Asymptotic Periodicity of Bounded Mild Solutions for Evolution Equations with Non-Densely Defined and Fractional Derivative
Abstract
1. Introduction
2. Preliminaries
3. Main Results
3.1. Spectral Characterization of Asymptotic Periodic Functions
- (i)
- Let and . Then, a necessary and sufficient condition for is ;
- (ii)
- Let . Then, if and only if ;
- 1.
- The function is continuous,
- 2.
- for all ,
- 3.
- .
3.2. Asymptotic Periodic Solution
3.3. The Operator as an Infinitesimal Generator of a -Semigroup
- 1.
- ;
- 2.
- ,
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cuevas, C.; Pinto, M. Existence and uniqueness of pseudo almost periodic solutions of semilinear Cauchy problems with non dense domain. Nonlinear Anal. Theory Methods Appl. 2001, 5, 73–83. [Google Scholar] [CrossRef]
- Luong, V.T.; Ngyen, V.M. A simple Spectral Theory of Polynomially Bounded solutions and Applications to Differential Equations. Semigroup Forum 2021, 102, 456–476. [Google Scholar] [CrossRef]
- Gorenflo, R.; Luchko, Y.; Yamamoto, M. Time-fractional diffusion equation in the fractional Sobolev spaces. Fract. Calc. Appl. Anal. 2015, 18, 799–820. [Google Scholar] [CrossRef]
- Atanacković, T.; Konjik, S.; Oparnica, L.; Zorica, D. The Cattaneo type space-time fractional heat conduction equation. Contin. Mech. Thermodyn. 2012, 24, 293–311. [Google Scholar] [CrossRef]
- Voller, R.; Vaughan, J. On a fractional derivative form of the Green-Ampt infiltration model. Adv. Water Resour. 2011, 34, 257–262. [Google Scholar] [CrossRef]
- Reşat, A.; Mursaleen, M. Some approximation results on Chlodowsky type q-Bernstein-Schurer operators. Filomat 2023, 37, 8013–8028. [Google Scholar]
- Cai, Q.B.; Aslan, R.; Özger, F.; Srivastava, H.M. Approximation by a new Stancu variant of generalized (λ,μ)-Bernstein operators. Alex. Eng. J. 2024, 107, 205–214. [Google Scholar] [CrossRef]
- Ezzinbi, K.; Liu, J.H. Periodic solutions of non densely defined delay evolution equations. Appl. Math. Stoch. Anal. 2002, 15, 105–114. [Google Scholar]
- Prüss, J. Periodic solutions of the thermostat problem. In Differential Equations in Banach Spaces; Lecture Notes in Math; Springer: Berlin/Heidelberg, Germany, 1986; pp. 216–226. [Google Scholar]
- Savaş, E.; Mursaleen, M. Bézier type Kantorovich q-Baskakov operators via wavelets and some approximation properties. Bull. Iran. Math. Soc. 2023, 49, 68. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, D.; Ping, B. Existence of periodic solutions of a scalar functional differential equation via a fixed point theorem. Math. Comput. Model. 2007, 46, 718–729. [Google Scholar] [CrossRef]
- Nguyen, V.M.; N’Guerekata, G.; Siegmund, S. Circular spectrum and bounded solutions of periodic evolution equations. J. Differ. Equ. 2009, 246, 3089–3108. [Google Scholar] [CrossRef]
- Nguyen, V.M.; Matsunaga, H.; Nguyen, H.D.; Trong, L.V. A Katznelson-Tzafriri type theorem for difference equations and applications. Proc. Am. Math. Soc. 2022, 150, 1105–1114. [Google Scholar]
- Prato, G.D.; Sinestrari, E. Differential operators with nondense domain. Ann. Sc. Norm. Super. Pisa-Cl. Sci. 1987, 14, 285–344. [Google Scholar]
- Guhring, F.; Rabiger, F. Asymptotic properties of mild solutions for nonautonomous evolution equations with applications to retarded differential equations. Abstr. Appl. Anal. 1999, 4, 169–194. [Google Scholar] [CrossRef]
- Kao, Y.; Li, H. Asymptotic multistability and local S-asymptotic ω-periodicity for the nonautonomous fractional-order neural networks with impulses. Sci. China Inf. Sci. 2021, 64, 1–13. [Google Scholar] [CrossRef]
- Ezzinbi, K.; Jazar, M. New criteria for the existence of periodic and almost periodic solutions for some evolution equations in Banach spaces. Electron. J. Qual. Theory Differ. Equ. 2004, 2004, 1–12. [Google Scholar] [CrossRef]
- Luong, V.T.; Loi, D.V.; Minh, N.V.; Matsunaga, H. A Massera theorem for asymptotic periodic solutions of periodic evolution equations. J. Differ. Equ. 2022, 329, 371–394. [Google Scholar] [CrossRef]
- Henriquez, H.R.; Pierri, M.; Taboas, P. On S-asymptotically ω-periodic functions on Banach spaces and applications. J. Math. Anal. Appl. 2008, 343, 1119–1130. [Google Scholar] [CrossRef]
- Pazy, A. The Abstract Cauchy Problem. Semigroups of Linear Operators and Applications to Partial Differential Equations; Springer: New York, NY, USA, 1983; pp. 100–125. [Google Scholar]
- Haiyin, G.; Ke, W.; Fengying, W.; Xiaohua, D. Massera-type theorem and asymptotically periodic logistic equations. Nonlinear Anal. Real World Appl. 2006, 7, 1268–1283. [Google Scholar] [CrossRef]
- Kubica, A.; Yamamoto, M. Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients. Fract. Calc. Appl. Anal. 2018, 21, 276–311. [Google Scholar] [CrossRef]
- Xu, X.; Huang, Q. Discontinuous Galerkin time stepping for semilinear parabolic problems with time constant delay. J. Sci. Comput. 2023, 96, 57. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, J.; Taqbibt, A.; Chaib, M.; Elomari, M. Asymptotic Periodicity of Bounded Mild Solutions for Evolution Equations with Non-Densely Defined and Fractional Derivative. Fractal Fract. 2025, 9, 85. https://doi.org/10.3390/fractalfract9020085
Zuo J, Taqbibt A, Chaib M, Elomari M. Asymptotic Periodicity of Bounded Mild Solutions for Evolution Equations with Non-Densely Defined and Fractional Derivative. Fractal and Fractional. 2025; 9(2):85. https://doi.org/10.3390/fractalfract9020085
Chicago/Turabian StyleZuo, Jiabin, Abdellah Taqbibt, Mohamed Chaib, and M’hamed Elomari. 2025. "Asymptotic Periodicity of Bounded Mild Solutions for Evolution Equations with Non-Densely Defined and Fractional Derivative" Fractal and Fractional 9, no. 2: 85. https://doi.org/10.3390/fractalfract9020085
APA StyleZuo, J., Taqbibt, A., Chaib, M., & Elomari, M. (2025). Asymptotic Periodicity of Bounded Mild Solutions for Evolution Equations with Non-Densely Defined and Fractional Derivative. Fractal and Fractional, 9(2), 85. https://doi.org/10.3390/fractalfract9020085