Stability and Well-Posedness of Fractional Navier–Stokes with Directional Fractional Diffusion
Abstract
1. Introduction
2. Technical Lemmas
- (i)
- Derivatives commute with averaging.For one hasIn particular, if , then and . (For , periodicity yields .)
- (ii)
- Orthogonality in. For any non-negative integer k and any multi–index α with ,Consequently,
- (iii)
- Sharpened vertical fractional Poincaré estimate.The oscillatory part satisfies the vertical Poincaré estimateand, more generally, for any ,where is the Fourier multiplier with symbol .
3. Main Proof
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
| Symbol | Meaning / Definition |
| One-dimensional periodic torus; . | |
| , | Space and time variables. |
| , | Velocity and pressure. |
| , | Gradient and Laplacian; , . |
| Vorticity. | |
| Vertical average (in ). Defined component-wise for vector/tensor fields. | |
| Oscillatory part with respect to (mean zero in ). | |
| , | Further splitting of into its –mean and the –mean–zero remainder ; . |
| , | Vertical and secondary () averages applied to (component-wise). |
| One-dimensional fractional derivative in (Fourier multiplier ). | |
| One-dimensional fractional derivative in (Fourier multiplier ). | |
| Vertical and horizontal dissipation coefficients. | |
| Fractional exponents (orders and in dissipation). | |
| inner product; . | |
| Frobenius (tensor) product. | |
| Commutator of operators A and B. | |
| , | Sobolev/Lebesgue norms on . |
| Anisotropic mixed-norm notation (Lebesgue). | |
| ≲, ≈ | Inequalities up to a harmless constant; equivalence up to two-sided constants. |
| C | Generic positive constant independent of the solution (may change from line to line). Subscripts indicate dependence, e.g., . |
References
- Pedlosky, J. Geophysical Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Salmon, R. Lectures on Geophysical Fluid Dynamics; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Vallis, G.K. Atmospheric and Oceanic Fluid Dynamics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Griffies, S.M. Fundamentals of Ocean Climate Models, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar]
- Majda, A.J.; Kramer, P.R. Simplified models for turbulent diffusion: Theory, numerical modeling and applications. Phys. Rep. 1999, 314, 237–574. [Google Scholar] [CrossRef]
- Shaheen, S.; Huang, H.; Arain, M.B.; Ijaz, N.; Saleem, S. Heat and mass transfer in tri-layer ependymal ciliary transport with diverse viscosity. ZAMM—J. Appl. Math. Mech./Z. für Angew. Math. und Mech. 2024, 104, e202301007. [Google Scholar] [CrossRef]
- Shaheen, S.; Huang, H.; Arain, M.B.; Al-Zubaidi, A.; Tag-eldin, E.M. Concentration and thermal analysis of an immiscible tangent hyperbolic fluid with distinct viscosity through a horizontal asymmetric channel: Theoretical and observational study. Case Stud. Therm. Eng. 2023, 50, 103386. [Google Scholar] [CrossRef]
- Chemin, J.-Y.; Zhang, P. On the global wellposedness to the 3-D incompressible anisotropic Navier–Stokes equations. Commun. Math. Phys. 2007, 272, 529–566. [Google Scholar] [CrossRef]
- Ji, R.; Luo, W.; Jiang, L. Stability of the 3D incompressible Navier–Stokes equations with fractional horizontal dissipation. Appl. Math. Comput. 2023, 448, 127934. [Google Scholar] [CrossRef]
- Ji, R.; Wu, J.; Yang, W. Stability and optimal decay for the 3D Navier–Stokes equations with horizontal dissipation. J. Differ. Equ. 2021, 290, 57–77. [Google Scholar] [CrossRef]
- Paicu, M. Équation de Navier–Stokes dans des espaces critiques. Rev. Mat. Iberoam. 2005, 21, 179–235. [Google Scholar] [CrossRef]
- Paicu, M.; Zhang, P. Global solutions to the 3-D incompressible anisotropic Navier–Stokes system in the critical spaces. Commun. Math. Phys. 2011, 307, 713–759. [Google Scholar] [CrossRef]
- Shang, H.; Zhai, Y. Stability and large time decay for the three-dimensional anisotropic magnetohydrodynamic equations. Z. Angew. Math. Phys. 2022, 73, 71. [Google Scholar] [CrossRef]
- Ru, S.; Abidin, M.Z. Global well-posedness of the incompressible fractional Navier–Stokes equations in Fourier–Besov spaces with variable exponents. Comput. Math. Appl. 2019, 77, 1082–1090. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, P. Enhanced dissipation for the third component of 3D anisotropic Navier–Stokes equations. J. Differ. Equ. 2022, 335, 464–496. [Google Scholar] [CrossRef]
- Cao, C.; Wu, J. Stability of the 3D Navier–Stokes equations with anisotropic dissipation. Nonlinearity 2025, 38, 095012. [Google Scholar] [CrossRef]
- Sun, X.; Liu, H. Uniqueness of the weak solution to the fractional anisotropic Navier–Stokes equations. Math. Methods Appl. Sci. 2021, 44, 253–264. [Google Scholar] [CrossRef]
- Li, F.; Yuan, B. Global well-posedness of the 3D generalized Navier–Stokes equations with fractional partial dissipation. Acta Appl. Math. 2021, 171, 20. [Google Scholar] [CrossRef]
- Yang, W.; Jiu, Q.; Wu, J. The 3D incompressible Navier–Stokes equations with partial hyperdissipation. Math. Nachr. 2019, 292, 1823–1836. [Google Scholar] [CrossRef]
- Lou, Z.; Yang, Q.; He, J.; He, K. Uniform analytic solutions for fractional Navier–Stokes equations. Appl. Math. Lett. 2021, 112, 106784. [Google Scholar] [CrossRef]
- Abidin, M.Z.; Khan, A. Uniform Analyticity and Time Decay of Solutions to the 3D Fractional Rotating Magnetohydrodynamics System in Critical Sobolev Spaces. Fractal Fract. 2025, 9, 360. [Google Scholar] [CrossRef]
- Abidin, M.Z.; Chen, J. Global well-posedness for fractional Navier–Stokes equations in variable exponent Fourier–Besov–Morrey spaces. Acta Math. Sci. 2021, 41, 164–176. [Google Scholar] [CrossRef]
- Abidin, M.Z. On the global well-posedness of rotating magnetohydrodynamics equations with fractional dissipation. Fractal Fract. 2022, 6, 340. [Google Scholar] [CrossRef]
- Dong, B.; Wu, J.; Xu, X.; Zhu, N. Stability and exponential decay for the 2D anisotropic Navier–Stokes equations with horizontal dissipation. J. Math. Fluid Mech. 2021, 23, 100. [Google Scholar] [CrossRef]
- Feng, W.; Wang, W.; Wu, J. Nonlinear stability for the 2D incompressible MHD system with fractional dissipation in the horizontal direction. J. Evol. Equ. 2023, 23, 37. [Google Scholar] [CrossRef]
- Cao, C.; Wu, J. Global regularity for the two-dimensional anisotropic Boussinesq equations with vertical dissipation. Arch. Ration. Mech. Anal. 2013, 208, 985–1004. [Google Scholar] [CrossRef]
- Lin, H.; Wu, J.; Zhu, Y. Global solutions to 3D incompressible MHD system with dissipation in only one direction. SIAM J. Math. Anal. 2023, 55, 4570–4598. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abidin, M.Z.; Khan, A. Stability and Well-Posedness of Fractional Navier–Stokes with Directional Fractional Diffusion. Fractal Fract. 2025, 9, 708. https://doi.org/10.3390/fractalfract9110708
Abidin MZ, Khan A. Stability and Well-Posedness of Fractional Navier–Stokes with Directional Fractional Diffusion. Fractal and Fractional. 2025; 9(11):708. https://doi.org/10.3390/fractalfract9110708
Chicago/Turabian StyleAbidin, Muhammad Zainul, and Abid Khan. 2025. "Stability and Well-Posedness of Fractional Navier–Stokes with Directional Fractional Diffusion" Fractal and Fractional 9, no. 11: 708. https://doi.org/10.3390/fractalfract9110708
APA StyleAbidin, M. Z., & Khan, A. (2025). Stability and Well-Posedness of Fractional Navier–Stokes with Directional Fractional Diffusion. Fractal and Fractional, 9(11), 708. https://doi.org/10.3390/fractalfract9110708

