Finite-Time Stability for a Class of Fractional Itô–Doob Stochastic Time Delayed Systems
Abstract
1. Introduction
- •
- Establishing finite-time stability results based on Gronwall-type inequalities.
- •
- The work in [14] addresses finite-time stability for Riemann–Liouville fractional stochastic systems, providing important results for this class. In contrast, our study focuses on fractional Itô–Doob stochastic systems, which require different analytical tools due to the distinct characteristics of the fractional operator structure. Furthermore, our approach incorporates time delays and stochastic perturbations within a fractional framework, thereby extending the applicability of stability results to a broader class of complex dynamical systems.
- •
- We integrate stochastic effects and time delays in a novel manner to capture complex dynamical behaviors.
2. Main Results
3. Illustrative Examples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Hadamard, J. Essai sur l’étude des fonctions données par leur développement de Taylor. J. Math. Pures Appl. 1892, 8, 101–186. [Google Scholar]
- Gambo, Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T. On Caputo modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2014, 2014, 10. [Google Scholar] [CrossRef]
- Almeida, R. Caputo-Hadamard fractional derivatives of variable order. Numer. Funct. Anal. Optim. 2017, 38, 1–19. [Google Scholar] [CrossRef]
- Ardjouni, A.; Boulares, H.; Djoudi, A. Asymptotic stability in delay nonlinear fractional differential equations. Proyecciones J. Math. 2016, 35, 263–275. [Google Scholar] [CrossRef]
- Belaid, M.; Ardjouni, A.; Boulares, H.; Djoudi, A. Stability by krasnoselskii’s fixed point theorem for nonlinear fractional dynamic equations on a time scale. Honam Math. J. 2019, 41, 51–65. [Google Scholar]
- Ben Makhlouf, A.; Mchiri, L.; Rhaima, M. Ulam-Hyers-Rassias stability of stochastic functional differential equations via fixed point methods. J. Funct. Spaces 2021, 2021, 5544847. [Google Scholar] [CrossRef]
- Ben Makhlouf, A. Stability with respect to part of the variables of nonlinear Caputo fractional differential equations. Math. Commun. 2018, 23, 119–126. [Google Scholar]
- Waezizadeh, T.; Mehrpooya, A. A stochastic model for dynamics of two populations and its stability. In Proceedings of the 47th Annual Iranian Mathematics Conference, Karaj, Iran, 28–31 August 2016. [Google Scholar]
- Mtiri, F. Finite time stability for a class of Hadamard fractional Itô–Doob stochastic time-delayed systems. Asian J. Control 2025. [Google Scholar] [CrossRef]
- Ben Makhlouf, A. Partial practical stability for fractional-order nonlinear systems. Math. Methods Appl. Sci. 2022, 45, 5135–5148. [Google Scholar] [CrossRef]
- Ben Makhlouf, A.; Baleanu, D. Finite time stability of fractional order systems of neutral type. Fractal Fract. 2022, 6, 289. [Google Scholar] [CrossRef]
- Ben Makhlouf, A. A novel finite time stability analysis of nonlinear fractional-order time delay systems: A fixed point approach. Asian J. Control 2022, 24, 3580–3587. [Google Scholar] [CrossRef]
- Arfaoui, H.; Ben Makhlouf, A.; Mchiri, L.; Rhaima, M. New finite-time stability result for a class of Itô-Doob stochastic fractional order systems. Alex. Eng. J. 2023, 73, 89–93. [Google Scholar] [CrossRef]
- Mao, X. Exponential Stability of Stochastic Differential Equations; Dekker: New York, NY, USA, 1994. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghoul, W.; Albala, H.; Boulares, H.; Bouchelaghem, F.; Moumen, A. Finite-Time Stability for a Class of Fractional Itô–Doob Stochastic Time Delayed Systems. Fractal Fract. 2025, 9, 683. https://doi.org/10.3390/fractalfract9110683
Ghoul W, Albala H, Boulares H, Bouchelaghem F, Moumen A. Finite-Time Stability for a Class of Fractional Itô–Doob Stochastic Time Delayed Systems. Fractal and Fractional. 2025; 9(11):683. https://doi.org/10.3390/fractalfract9110683
Chicago/Turabian StyleGhoul, Wissam, Hussien Albala, Hamid Boulares, Faycal Bouchelaghem, and Abdelkader Moumen. 2025. "Finite-Time Stability for a Class of Fractional Itô–Doob Stochastic Time Delayed Systems" Fractal and Fractional 9, no. 11: 683. https://doi.org/10.3390/fractalfract9110683
APA StyleGhoul, W., Albala, H., Boulares, H., Bouchelaghem, F., & Moumen, A. (2025). Finite-Time Stability for a Class of Fractional Itô–Doob Stochastic Time Delayed Systems. Fractal and Fractional, 9(11), 683. https://doi.org/10.3390/fractalfract9110683

