Regularity and Qualitative Study of Parabolic Physical Ginzburg–Landau Equations in Variable Exponent Herz Spaces via Fractional Bessel–Riesz Operators
Abstract
1. Introduction
- The primary motivation of this study, and the associated research gap in the literature, lies in the observation that recent work has investigated the boundedness of the Bessel–Riesz operator primarily in Morrey spaces [5] and Lebesgue spaces [6], both of which predominantly capture local behavior. In contrast, the present study establishes the boundedness in variable Herz spaces, which are capable of describing both local and global behaviors. This approach not only refines but also generalizes several related results available in the current literature.
- Moreover, this study generalizes and refines the results of [43,44,45], in which the authors examined the boundedness properties of classical Riesz operators within the settings of classical Lebesgue spaces and Herz spaces. In contrast, we investigate the Bessel–Riesz operator, which possesses enhanced analytical properties compared to the classical Riesz operator. For clarity, a comparative analysis of the two operators is presented in Table 1. Furthermore, we work within the framework of variable Herz spaces, where all parameters are allowed to vary, providing a natural and more comprehensive generalization of the aforementioned studies.
- Furthermore, motivated by the regularity results established in [35,36,37,38], we aimed to investigate the regularity of Ginzburg–Landau-type parabolic initial–boundary value problems. The main distinction lies in the fact that their work focuses on elliptic problems using Calderón–Zygmund operators, whereas our study addresses parabolic problems employing Bessel–Riesz operators.
2. Preliminary Framework
- Notation and Conventions
2.1. Modular Function Spaces
- 1.
- Zero at origin:
- 2.
- Unitary invariance: for all with
- 3.
- Definiteness: If for every , then
- 4.
- Monotonicity in scale: For ,
- 5.
- Left-continuity in scale: For each fixed , the map is left-continuous on .
2.2. Variable Exponent Spaces
- Local log-Hölder continuity: There exists such that, for all ,
- Log-Hölder continuity at infinity: There exist and such that, for all ,
3. The Major Results
- (i)
- Classical fractional integral operator (Riesz potential):If , then reduces to the Riesz potential of order :
- (ii)
- Bessel–Riesz operator:When , the operator becomes the classical Bessel–Riesz potential:which improves the decay at infinity and appears in various potential-theoretic contexts [54].
- (iii)
- Sublinear-type singular integral:If and , thenwhich represents a highly singular kernel and arises in limiting cases of classical potential operators [53].
Boundedness of Bessel–Riesz-Type Operators in Herz-Type Spaces
- Estimation of :
- Local part: Using the boundedness of on , we have
4. Regularity Framework for Nonlinear Parabolic PDEs in Variable Exponent Herz Spaces
Ginzburg–Landau-Type Parabolic Model and Linearization Framework
- The Nonlinear Problem
- Diffusion Operator
- Structural Assumptions
- Potential Energy
- Frozen-Coefficient Approximation
- Fundamental Solution
- Kernel Derivatives
- Derivative Bound
- 1.
- 2.
- The variable exponent functions , , and satisfy the hypotheses of Theorem 6.
- 3.
- is a weak solution of the Ginzburg–Landau initial–boundary value problemwhere is given by (3) and .
- 4.
- The cubic restoring term satisfies the local boundedness conditionfor some constant depending on the local energy bounds of .Then, there exist constants
- Parameters: , , .
- Exponents:
- Weight index: , log–Hölder continuous at 0 and ∞, with
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sherman, S. On a theorem of hardy, littlewood, polya, and blackwell. Proc. Natl. Acad. Sci. USA 1951, 37, 826–831. [Google Scholar] [CrossRef]
- Reichel, W. Characterization of balls by Riesz-potentials. Ann. Mat. Pura Appl. 2009, 188, 235–245. [Google Scholar] [CrossRef]
- Baoxiang, W. Bessel (Riesz) potentials on banach function spaces and their applications I theory. Acta Math. Sin. 1998, 14, 327–340. [Google Scholar] [CrossRef]
- Bak, J.G. Sharp estimates for the Bochner-Riesz operator of negative order in R2. Proc. Am. Math. Soc. 1997, 125, 1977–1986. [Google Scholar] [CrossRef]
- Mehmood, S.; Fatmawati, E.; Raza, W. Bessel-Riesz Operators on Lebesgue Spaces and Morrey Spaces Defined in Measure Metric Spaces. Int. J. Differ. Equ. 2023, 2023, 3148049. [Google Scholar] [CrossRef]
- Nasir, M.; Alshammari, F.S.; Raza, A. Bessel–Riesz Operator in Variable Lebesgue Spaces Lp (·). Axioms 2025, 14, 429. [Google Scholar] [CrossRef]
- Idris, M.; Gunawan, H. The boundedness of generalized Bessel-Riesz operators on generalized Morrey spaces. J. Phys. Conf. Ser. 2017, 893, 012014. [Google Scholar] [CrossRef]
- Adhikari, S.; Parui, S. The boundedness of Dunkl Bessel Riesz operators on Dunkl-type Morrey spaces. Indian J. Pure Appl. Math. 2025, 1–14. [Google Scholar] [CrossRef]
- Shen, Z. Bounds of Riesz transforms on Lp spaces for second order elliptic operators. Ann. L’institut Fourier 2005, 55, 173–197. [Google Scholar] [CrossRef]
- Duong, X.T.; McIntosh, A. The Lp boundedness of Riesz transforms associated with divergence form operators. In Workshop on Analysis and Applications; Australian National University: Canberra, Australia, 1997; Volume 37, pp. 15–25. [Google Scholar]
- Assaad, J.; Ouhabaz, E.M. Riesz transforms of Schrödinger operators on manifolds. J. Geom. Anal. 2012, 22, 1108–1136. [Google Scholar] [CrossRef]
- Maas, J.; Van Neerven, J. Boundedness of Riesz transforms for elliptic operators on abstract Wiener spaces. J. Funct. Anal. 2009, 257, 2410–2475. [Google Scholar] [CrossRef]
- Huang, J. The boundedness of Riesz transforms for Hermite expansions on the Hardy spaces. J. Math. Anal. Appl. 2012, 385, 559–571. [Google Scholar] [CrossRef]
- Betancor, J.J.; Duong, X.T.; Lee, M.Y.; Li, J.; Wick, B.D. The Riesz Transform and Fractional Integral Operators in the Bessel Setting. Integral Equ. Oper. Theory 2025, 97, 15. [Google Scholar] [CrossRef]
- Burenkov, V.I. Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I. Eurasian Math. J. 2012, 3, 11–32. [Google Scholar]
- Guliyev, V.S.; Hasanov, J.J. Necessary and sufficient conditions for the boundedness of B-Riesz potential in the B-Morrey spaces. J. Math. Anal. Appl. 2008, 347, 113–122. [Google Scholar] [CrossRef]
- Sultan, B.; Azmi, F.; Sultan, M.; Mehmood, M.; Mlaiki, N. Boundedness of Riesz potential operator on grand Herz-Morrey spaces. Axioms 2022, 11, 583. [Google Scholar] [CrossRef]
- Ginzburg, V.L.; Landau, L.D. On the theory of superconductivity. In On Superconductivity and Superfluidity: A Scientific Autobiography; Springer: Berlin/Heidelberg, Germany, 2009; pp. 113–137. [Google Scholar]
- Pitaevskii, L.; Stringari, S. Bose—Einstein Condensation and Superfluidity; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Akhmediev, N.; Ankiewicz, A. (Eds.) Solitons: Nonlinear Pulses and Beams; Chapman & Hall: London, UK, 1997. [Google Scholar]
- Cross, M.C.; Hohenberg, P.C. Pattern Formation Outside of Equilibrium. Rev. Mod. Phys. 1993, 65, 851–1112. [Google Scholar] [CrossRef]
- Bray, A.J. Theory of phase-ordering kinetics. Adv. Phys. 1994, 43, 357–459. [Google Scholar] [CrossRef]
- Epstein, I.R.; Pojman, J.A. An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Murray, J.D. Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Lapenta, G.; Brackbill, J.U. Nonlinear evolution of the lower hybrid drift instability: Current sheet thinning and kinking. Phys. Plasmas 2002, 9, 1544–1554. [Google Scholar] [CrossRef]
- Ambrosio, L. Well posedness of ODE’s and continuity equations with nonsmooth vector fields, and applications. Rev. MatemáTica Complut. 2017, 30, 427–450. [Google Scholar] [CrossRef]
- Weinan, E.; Jentzen, A.; Shen, H. Renormalized powers of Ornstein–Uhlenbeck processes and well-posedness of stochastic Ginzburg–Landau equations. Nonlinear Anal. 2016, 142, 152–193. [Google Scholar]
- Marino, L.; Menozzi, S. Weak well-posedness for a class of degenerate Lévy-driven SDEs with Hölder continuous coefficients. Stoch. Processes Their Appl. 2023, 162, 106–170. [Google Scholar] [CrossRef]
- Wu, S.; Yan, W.; Hou, C.; Huang, J. Stochastic high-order modified Zakharov-Kuznetsov equation: Well-posedness for low regularity and statistical property. Appl. Anal. 2025, 104, 2495–2517. [Google Scholar] [CrossRef]
- Agresti, A.; Blessing, A.; Luongo, E. Global well-posedness of 2D Navier–Stokes with Dirichlet boundary fractional noise. Nonlinearity 2025, 38, 075023. [Google Scholar] [CrossRef]
- Kunze, M.C. Perturbation of strong Feller semigroups and well-posedness of semilinear stochastic equations on Banach spaces. Stochastics Int. J. Probab. Stoch. Processes 2013, 85, 960–986. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.; Zhu, R. Gaussian fluctuations for interacting particle systems with singular kernels. Arch. Ration. Mech. Anal. 2023, 247, 101. [Google Scholar] [CrossRef]
- Cruzeiro, A.B.; Symeonides, A. On a Non-Periodic Modified Euler Equation: Well-Posedness and Quasi-Invariant Measures. Potential Anal. 2021, 54, 607–626. [Google Scholar] [CrossRef]
- Ragusa, M.A. Homogeneous Herz spaces and regularity results. Nonlinear Anal. Theory Methods Appl. 2009, 71, e1909–e1914. [Google Scholar] [CrossRef]
- Ragusa, M.A. Regularity of solutions of divergence form elliptic equations. Proc. Amer. Math. Soc. 1999, 128, 533–540. [Google Scholar] [CrossRef]
- Scapellato, A. Regularity of solutions to elliptic equations on Herz spaces with variable exponents. Bound. Value Probl. 2019, 2019, 2. [Google Scholar] [CrossRef]
- Afzal, W.; Abbas, M.; Macías-Díaz, J.E.; Gallegos, A.; Almalki, Y. Boundedness and Sobolev-Type Estimates for the Exponentially Damped Riesz Potential with Applications to the Regularity Theory of Elliptic PDEs. Fractal Fract. 2025, 9, 458. [Google Scholar] [CrossRef]
- Makharadze, D.; Meskhi, A.; Ragusa, M.A. Regularity results in grand variable exponent Morrey spaces and applications. Electron. Res. Arch. 2025, 33, 5. [Google Scholar] [CrossRef]
- Afzal, W.; Abbas, M.; Aloraini, N.M.; Ro, J. Resolution of open problems via Orlicz-Zygmund spaces and new geometric properties of Morrey spaces in the Besov sense with non-standard growth. AIMS Math. 2025, 10, 13908–13940. [Google Scholar] [CrossRef]
- Hansen, M.; Schwab, C. Analytic regularity and nonlinear approximation of a class of parametric semilinear elliptic PDEs. Math. Nachrichten 2013, 286, 832–860. [Google Scholar] [CrossRef]
- Messaoudi, R.; Lidouh, A.; Seddoug, B. Analysis of a quadratic Finite Element Method for Second-Order Linear Elliptic PDE, with low regularity data. Numer. Funct. Anal. Optim. 2020, 41, 507–541. [Google Scholar] [CrossRef]
- Saoudi, K.; Ghosh, S.; Choudhuri, D. Multiplicity and Hölder regularity of solutions for a nonlocal elliptic PDE involving singularity. J. Math. Phys. 2019, 60, 101509. [Google Scholar] [CrossRef]
- Izuki, M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 2010, 36, 33–50. [Google Scholar] [CrossRef]
- Li, X.; Yang, D. Boundedness of some sublinear operators on Herz spaces. Ill. J. Math. 1996, 40, 484–501. [Google Scholar] [CrossRef]
- Almeida, A.; Drihem, D. Maximal, potential and singular type operators on Herz spaces with variable exponents. J. Math. Anal. Appl. 2012, 394, 781–795. [Google Scholar] [CrossRef]
- Cruz-Uribe, D.; Fiorenza, A.; Ruzhansky, M.; Wirth, J.; Tikhonov, S. Variable Lebesgue Spaces and Hyperbolic Systems; Birkhäuser: Basel, Switzerland, 2014. [Google Scholar]
- Afzal, W. Boundedness and regularity of the Navier–Stokes system in generalized Herz spaces via a novel fractional potential framework. Chaos Solitons Fractals 2025, 201, 117086. [Google Scholar] [CrossRef]
- Herz, C. Lipschitz Spaces and Bernstein’s Theorem on Absolutely Convergent Fourier Transforms. J. Math. Mech. 1968, 18, 283–324. [Google Scholar] [CrossRef]
- Izuki, M. Herz and Amalgam Spaces with Variable Exponent, the Haar Wavelets and Greediness of the Wavelet System. East. J. Approx. 2009, 15, 87–109. [Google Scholar]
- Lu, S.; Yang, D. The Littlewood-Paley Function and Transform Characterizations of a New Hardy Space HK2 Associated with the Herz Space. Stud. Math. 1992, 101, 285–298. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z. Boundedness of Singular Integral Operators on Weak Herz Type Spaces with Variable Exponent. Ann. Funct. Anal. 2020, 11, 1108–1125. [Google Scholar] [CrossRef]
- Stein, E.M. Singular Integrals and Differentiability Properties of Functions; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]
- Adams, R.A.; Fournier, J.J.F. Sobolev Spaces, 2nd ed.; Academic Press: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Ruzhansky, M.; Suragan, D.; Yessirkegenov, N. Hardy-Littlewood, Bessel-Riesz, and Fractional Integral Operators in Anisotropic Morrey and Campanato Spaces. Fract. Calc. Appl. Anal. 2018, 21, 577–612. [Google Scholar] [CrossRef]
- Nasir, M.; Raza, A.; Cotîrlă, L.I.; Breaz, D. Boundedness of Bessel–Riesz operator in variable Lebesgue measure spaces. Mathematics 2025, 13, 410. [Google Scholar] [CrossRef]
Setting | Classical Riesz Potential | Bessel–Riesz Potential |
---|---|---|
Function Space | Variable Herz space | Same as left |
Exponent Settings | , , | Same as left |
Kernel Parameters | , (no extra decay) | , (polynomial decay factor) |
Additional Decay | None | |
Result | Insufficient decay at infinity and limited singularity control | Satisfies boundedness owing to improved decay and integrability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afzal, W.; Alqahtani, M.H.; Abbas, M.; Breaz, D. Regularity and Qualitative Study of Parabolic Physical Ginzburg–Landau Equations in Variable Exponent Herz Spaces via Fractional Bessel–Riesz Operators. Fractal Fract. 2025, 9, 644. https://doi.org/10.3390/fractalfract9100644
Afzal W, Alqahtani MH, Abbas M, Breaz D. Regularity and Qualitative Study of Parabolic Physical Ginzburg–Landau Equations in Variable Exponent Herz Spaces via Fractional Bessel–Riesz Operators. Fractal and Fractional. 2025; 9(10):644. https://doi.org/10.3390/fractalfract9100644
Chicago/Turabian StyleAfzal, Waqar, Mesfer H. Alqahtani, Mujahid Abbas, and Daniel Breaz. 2025. "Regularity and Qualitative Study of Parabolic Physical Ginzburg–Landau Equations in Variable Exponent Herz Spaces via Fractional Bessel–Riesz Operators" Fractal and Fractional 9, no. 10: 644. https://doi.org/10.3390/fractalfract9100644
APA StyleAfzal, W., Alqahtani, M. H., Abbas, M., & Breaz, D. (2025). Regularity and Qualitative Study of Parabolic Physical Ginzburg–Landau Equations in Variable Exponent Herz Spaces via Fractional Bessel–Riesz Operators. Fractal and Fractional, 9(10), 644. https://doi.org/10.3390/fractalfract9100644