Fractional Mathematical Modelling: Theory, Methods and Applications
1. Introduction
2. Overview of the Contributions in the Reprint
2.1. Theoretical Developments
2.2. Methodological Advances
2.3. Applications
3. Concluding Remarks
Funding
Conflicts of Interest
List of Contributions
- 1.
- Albidah, A.B. Application of Riemann–Liouville Derivatives on Second-Order Fractional Differential Equations: The Exact Solution. Fractal Fract. 2023, 7, 843. https://doi.org/10.3390/fractalfract7120843.
- 2.
- Alkandari, M.; Loutchko, D.; Luchko, Y. Anomalous Diffusion Models Involving Regularized General Fractional Derivatives with Sonin Kernels. Fractal Fract. 2025, 9, 363. https://doi.org/10.3390/fractalfract9060363.
- 3.
- Şengül, S.; Bekiryazici, Z.; Merdan, M. Approximate Solutions of Fractional Differential Equations Using Optimal q-Homotopy Analysis Method: A Case Study of Abel Differential Equations. Fractal Fract. 2024, 8, 533. https://doi.org/10.3390/fractalfract8090533.
- 4.
- AlBaidani, M.M. Comparative Study of the Nonlinear Fractional Generalized Burger–Fisher Equations Using the Homotopy Perturbation Transform Method and New Iterative Transform Method. Fractal Fract. 2025, 9, 390. https://doi.org/10.3390/fractalfract9060390.
- 5.
- Abdelfattah, W.M.; Ragb, O.; Salah, M.; Mohamed, M. A Robust and Versatile Numerical Framework for Modeling Complex Fractional Phenomena: Applications to Riccati and Lorenz Systems. Fractal Fract. 2024, 8, 647. https://doi.org/10.3390/fractalfract8110647.
- 6.
- Muhammad, G.; Akram, M.; Alsulami, H.; Hussain, N. Granular Fuzzy Fractional Continuous-Time Linear Systems: Roesser and Fornasini–Marchesini Models. Fractal Fract. 2025, 9, 398. https://doi.org/10.3390/fractalfract9070398.
- 7.
- Al-Dosari, A.A.M. Controllability of Mild Solution to Hilfer Fuzzy Fractional Differential Inclusion with Infinite Continuous Delay. Fractal Fract. 2024, 8, 235. https://doi.org/10.3390/fractalfract8040235.
- 8.
- Yu, D.; Liao, X.; Wang, Y. Modeling and Analysis of Caputo–Fabrizio Definition-Based Fractional-Order Boost Converter with Inductive Loads. Fractal Fract. 2024, 8, 81. https://doi.org/10.3390/fractalfract8020081.
- 9.
- Xu, K.; Chen, L.; Lopes, A.M.; Wang, M.; Wu, R.; Zhu, M. Fractional-Order Zener Model with Temperature–Order Equivalence for Viscoelastic Dampers. Fractal Fract. 2023, 7, 714. https://doi.org/10.3390/fractalfract7100714.
- 10.
- Garcia-de-los-Rios, V.M.; Arano-Martínez, J.A.; Trejo-Valdez, M.; Hernández-Pichardo, M.L.; Vidales-Hurtado, M.A.; Torres-Torres, C. Fractional Photoconduction and Nonlinear Optical Behavior in ZnO Micro and Nanostructures. Fractal Fract. 2023, 7, 885. https://doi.org/10.3390/fractalfract7120885.
- 11.
- Abdelfattah, W.M.; Ragb, O.; Salah, M.; Matbuly, M.S.; Mohamed, M. Fractional Partial Differential Equation Modeling for Solar Cell Charge Dynamics. Fractal Fract. 2024, 8, 729. https://doi.org/10.3390/fractalfract8120729.
- 12.
- Mihai, M.D.; Birs, I.R.; Badau, N.E.; Hegedus, E.T.; Ynineb, A.; Muresan, C.I. Personalised Fractional-Order Autotuner for the Maintenance Phase of Anaesthesia Using Sine-Tests. Fractal Fract. 2025, 9, 317. https://doi.org/10.3390/fractalfract9050317.
References
- Oliveira, E.C.D.; Machado, J.A.T. A Review of Definitions for Fractional Derivatives and Integral. Math. Probl. Eng. 2014, 2014, 238459. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Atangana, A. Fractional Operators and Their Applications. In Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology; Academic Press: Amsterdam, The Netherlands, 2018; pp. 79–112. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998; Volume 198. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Baleanu, D.; Agarwal, R.P. Fractional calculus in the sky. Adv. Differ. Equ. 2021, 117, 1–9. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Madani, Y.A.; Ali, Z.; Rabih, M.; Alsulami, A.; Eljaneid, N.H.E.; Aldwoah, K.; Muflh, B. Discrete Fractional-Order Modeling of Recurrent Childhood Diseases Using the Caputo Difference Operator. Fractal Fract. 2025, 9, 55. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, J. (Eds.) Fractional Calculus in Medical and Health Science, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Hafez, M.; Alshowaikh, F.; Voon, B.W.N.; Alkhazaleh, S.; Al-Faiz, H. Review on Recent Advances in Fractional Differentiation and its Applications. Prog. Fract. Differ. Appl. 2025, 11, 245–261. [Google Scholar] [CrossRef]
- Volos, C. Introductory Chapter: Fractional Calculus-From Theory to Applications; IntechOpen: London, UK, 2025. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabiei, F.; Kim, D.; Ali, Z. Fractional Mathematical Modelling: Theory, Methods and Applications. Fractal Fract. 2025, 9, 636. https://doi.org/10.3390/fractalfract9100636
Rabiei F, Kim D, Ali Z. Fractional Mathematical Modelling: Theory, Methods and Applications. Fractal and Fractional. 2025; 9(10):636. https://doi.org/10.3390/fractalfract9100636
Chicago/Turabian StyleRabiei, Faranak, Dongwook Kim, and Zeeshan Ali. 2025. "Fractional Mathematical Modelling: Theory, Methods and Applications" Fractal and Fractional 9, no. 10: 636. https://doi.org/10.3390/fractalfract9100636
APA StyleRabiei, F., Kim, D., & Ali, Z. (2025). Fractional Mathematical Modelling: Theory, Methods and Applications. Fractal and Fractional, 9(10), 636. https://doi.org/10.3390/fractalfract9100636