On Hybrid and Non-Hybrid Discrete Fractional Difference Inclusion Problems for the Elastic Beam Equation
Abstract
1. Introduction and Position of Problem
2. Preliminaries
- 1.
- , where .
- 2.
- If then for any .
- 3.
- .
- 1.
- Assume that κ and ϱ are any numbers, such that and are defined. Then, we have
- 2.
- Assume that and . Then,
- 1.
- For κ and i, in which both and are defined, then we have
- 2.
- Let . Then,
- .
- .
- ,
- has a fixed point in or
- We have and , such that .
- A is a Lipschitz operator with a Lipschitz constant .
- B is an upper semi-continuous operator with a compactness property.
- is such that .
- (a)
- There is a solution in for the operator inclusion or
- (b)
- The set is unbounded.
3. Main Results
- () is a non-empty, compact and convex multi-valued map.
- is upper semi-continuous for each .
- () For each there exists a function
- () There exists a non-decreasing function
- () There exists a constant , such that
- There exists , such that
- Step1
- Step2
- Step3
4. Numerical Applications
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benchohra, M.; Litimein, S.; Nieto, J.J. Semilinear fractional differential equations with infinite delay and non-instantaneous impulses. J. Fixed Point Theory Appl. 2019, 21, 21. [Google Scholar] [CrossRef]
- Kumar, A.; Chauhan, H.V.S.; Ravichandran, C.; Nisar, K.S.; Baleanu, D. Existence of solutions of non-autonomous fractional differential equations with integral impulse condition. Adv. Diff. Equ. 2020, 2020, 434. [Google Scholar] [CrossRef]
- Pratap, A.; Raja, R.; Alzabut, J.; Dianavinnarasi, J.; Cao, J.; Rajchakit, G. Finite-time Mittag-Leffler stability of fractional-order quaternion-valued memristive neural networks with impulses. Neural Process. Lett. 2020, 51, 1485–1526. [Google Scholar] [CrossRef]
- Iqbal, N.; Chughtai, M.T.; Ullah, R. Fractional study of the non-linear Burgers’ equations via a semi-analytical technique. Fractal Fract. 2023, 7, 103. [Google Scholar] [CrossRef]
- Alshehry, A.S.; Yasmin, H.; Shah, R.; Ullah, R.; Khan, A. Fractional-order modeling: Analysis of foam drainage and Fisher’s equations. Open Phys. 2023, 21, 20230115. [Google Scholar] [CrossRef]
- Noor, N.; Alyousef, H.; Shafee, A.; Shah, R.; El-Tantawy, S. A novel analytical technique for analyzing the (3+1)-dimensional fractional calogero-bogoyavlenskii-schiff equation: Investigating solitary/shock waves and many others physical phenomena. Phys. Scr. 2024, 99, 065257. [Google Scholar] [CrossRef]
- Alhejaili, A.; Az-Zo’bi, E.A.; Shah, R.; El-Tantawy, S.A. On the analytical soliton approximations to fractional forced Korteweg-de Vries equation arising in fluids and Plasmas using two novel techniques. Commun. Theor. Phys. 2024, 76, 085001. [Google Scholar] [CrossRef]
- Wu, R.; Lu, Y.; Chen, L. Finite-time stability of fractional delayed neural networks. Neurocomputing 2015, 149, 700–707. [Google Scholar] [CrossRef]
- Trigeassou, J.C.; Maamri, N.; Sabatier, J.; Oustaloup, A.A. Lyapunov approach to the stability of fractional differential equations. Signal Process. 2011, 91, 437–445. [Google Scholar] [CrossRef]
- Stamova, I. Mittag-Leffler stability of impulsive differential equations of fractional order. Quart. Appl. Math. 2015, 73, 525–535. [Google Scholar] [CrossRef]
- Gao, L.; Wang, D.; Wang, G. Further results on exponential stability for impulsive switched nonlinear time-delay systems with delayed impulse effects. Appl. Math. Compu. 2015, 268, 186–200. [Google Scholar] [CrossRef]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Salem, A.; Alzahrani, F.; Almaghamsi, L. Fractional Langevin equations with nonlocal integral boundary conditions. Mathematics 2019, 7, 402. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. Fractional difference calculus. In Proceedings of the International Symposium on Univalent Functions, Koriyama, Japan, May 1988; pp. 139–152. [Google Scholar]
- Goodrich, C.; Peterson, A.C. Discrete Fractional Calculus; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Atıcı, F.M.; Eloe, P.W. Two-point boundary value problems for finite fractional difference equations. J. Diff. Equ. Appl. 2011, 17, 445–456. [Google Scholar]
- Selvam, A.M.; Dhineshbabu, R. Existence and uniqueness of solutions for a discrete fractional boundary value problem. Inter. J. Appl. Math. 2020, 33, 283. [Google Scholar]
- Ahmad, M.; Zada, A.; Wang, X. Existence, uniqueness and stability of implicit switched coupled fractional differential equations of ψ-Hilfer type. Inter. J. Nonl. Sci. Numer. Simul. 2020, 21, 327–337. [Google Scholar] [CrossRef]
- Ahmad, M.; Zada, A.; Alzabut, J. Stability analysis of a nonlinear coupled implicit switched singular fractional differential system with p-Laplacian. Adv. Diff. Equ. 2019, 2019, 436. [Google Scholar] [CrossRef]
- Alzabut, J.; Selvam, A.G.M.; Dhineshbabu, R.; Kaabar, M.K. The existence, uniqueness and stability analysis of the discrete fractional three-point boundary value problem for the elastic beam equation. Symmetry 2021, 13, 789. [Google Scholar] [CrossRef]
- Azzaoui, B.; Tellab, B.; Zennir, K. Positive solutions for integral nonlinear boundary value problem in fractional Sobolev spaces. Math. Meth. Appl. Sci. 2023, 46, 3115–3131. [Google Scholar] [CrossRef]
- Naimi, A.; Tellab, B.; Zennir, K. Existence and stability results of a nonlinear fractional integro-differential equation with integral boundary conditions. Kragujev. J. Math. 2022, 46, 685–699. [Google Scholar]
- Naimi, A.; Tellab, B.; Zennir, K. Existence and Stability Results for the Solution of Neutral Fractional Integro-Differential Equation with Nonlocal Conditions. Tamk. J. Math. 2022, 53, 239–257. [Google Scholar] [CrossRef]
- Cianciaruso, F.; Infante, G.; Pietramala, P. Solutions of perturbed Hammerstein integral equations with applications. Nonl. Anal. Real World Appl. 2017, 33, 317–347. [Google Scholar] [CrossRef]
- Gupta, C.P. Existence and uniqueness theorems for the bending of an elastic beam equation. Appl. Anal. 1988, 26, 289–304. [Google Scholar] [CrossRef]
- Shammakh, W.; Selvam, A.G.M.; Dhakshinamoorthy, V.; Alzabut, J. A study of generalized hybrid discrete pantograph equation via Hilfer fractional operator. Fractal Fract. 2022, 6, 152. [Google Scholar] [CrossRef]
- Shammakh, W.; Selvam, A.G.M.; Dhakshinamoorthy, V.; Alzabut, J. Stability of Boundary Value Discrete Fractional Hybrid Equation of Second Type with Application to Heat Transfer with Fins. Symmetry 2022, 14, 1877. [Google Scholar] [CrossRef]
- Agarwal, R.; O’Regan, D.; Lakshmikantham, V. Discrete second order inclusions. J. Differ. Equ. Appl. 2003, 9, 879–885. [Google Scholar] [CrossRef]
- Apreutesei, N.; Apreutesei, G. A Trotter-Kato type result for a second order difference inclusion in a Hilbert space. J. Math. Anal. Appl. 2010, 361, 195–204. [Google Scholar] [CrossRef][Green Version]
- Lv, W. Existence of solutions for discrete fractional difference inclusions with boundary conditions. J. Contemp. Mathemat. Anal. 2017, 52, 261–266. [Google Scholar] [CrossRef]
- Dhage, B.C. Existence results for neutral functional diffrential inclusions in Banach algebras. Nonl. Anal. 2006, 64, 1290–1306. [Google Scholar] [CrossRef]
- Ferreira, R.A.C. Discrete Fractional Calculus and Fractional Difference Equations; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Deimling, K. Multi-Valued Differential Equations; de Gruyter: Berlin, Germany, 1992. [Google Scholar]
- Ismail, M.; Saeed, U.; Alzabut, J.; ur Rehman, M. Approximate solutions for fractional boundary value problems via Green-CAS wavelet method. Mathematics 2019, 7, 1164. [Google Scholar] [CrossRef]
- Lasota, A.; Opial, Z. An application of the Kakutani–Ky Fan theorem in the theory of ordinary diffrential equations. Bull. Acad. Pol. Sci. Set. Sci. Math. Astronom. Phy. 1965, 13, 781–786. [Google Scholar]
- Abdeljawad, T. On Riemann and Caputo fractional differences. Compu. Math. Appl. 2011, 62, 1602–1611. [Google Scholar] [CrossRef]
- Agarwal, R.; O’Regan, D.; Wong, P. Positive Solutions of Differential, Difference and Integral Equations; Kluwer: Dordrecht, The Netherlands, 1999. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alili, F.; Amara, A.; Zennir, K.; Radwan, T. On Hybrid and Non-Hybrid Discrete Fractional Difference Inclusion Problems for the Elastic Beam Equation. Fractal Fract. 2024, 8, 486. https://doi.org/10.3390/fractalfract8080486
Alili F, Amara A, Zennir K, Radwan T. On Hybrid and Non-Hybrid Discrete Fractional Difference Inclusion Problems for the Elastic Beam Equation. Fractal and Fractional. 2024; 8(8):486. https://doi.org/10.3390/fractalfract8080486
Chicago/Turabian StyleAlili, Faycal, Abdelkader Amara, Khaled Zennir, and Taha Radwan. 2024. "On Hybrid and Non-Hybrid Discrete Fractional Difference Inclusion Problems for the Elastic Beam Equation" Fractal and Fractional 8, no. 8: 486. https://doi.org/10.3390/fractalfract8080486
APA StyleAlili, F., Amara, A., Zennir, K., & Radwan, T. (2024). On Hybrid and Non-Hybrid Discrete Fractional Difference Inclusion Problems for the Elastic Beam Equation. Fractal and Fractional, 8(8), 486. https://doi.org/10.3390/fractalfract8080486