Modeling the Dispersion of Waves in a Multilayered Inhomogeneous Membrane with Fractional-Order Infusion
Abstract
1. Introduction
2. Problem Formulation
3. Problem Solution
4. Dispersion Relation
5. Application
5.1. Vibrational Displacement
5.1.1. Two-Layered Inhomogeneous Membrane
5.1.2. Three-Layered Inhomogeneous Membrane
5.2. Dispersion Relation
5.2.1. Two-Layered Inhomogeneous Membrane
5.2.2. Three-Layered Inhomogeneous Membrane
6. Numerical Results and Discussion
6.1. Two- and Three-Layered Inhomogeneous Membranes
6.2. Singled-Layered Homogeneous Membrane
7. Conclusions
- The study shows that increasing the fractional-order parameter in a bi-elastic inhomogeneous hollow membrane stretches the harmonic curves backward, resulting in a delay or decrease in wave propagation. This effect is observed consistently in both long-wave and short-wave propagations.
- For both the two- and three-layered inhomogeneous membranes, an increase in the fractional order leads to a decrease in the respective harmonic modes. This effect becomes more pronounced in the short-wave region, indicating that fractional-order parameters significantly influence short-wave propagation.
- In the context of long-wave and low-frequency propagation, only the fundamental mode satisfies the condition; this cuts across the three prototype cases. An increase in the fractional order raises the fundamental dispersion curve, effectively shrinking the range of the wavenumber suitable for long-wave propagation. This highlights the importance of fractional-order parameters in tuning the wave behavior for specific applications.
- In a single-layered homogeneous membrane, an increase in the fractional order results in an increase in the respective harmonic modes, contrasting with the behavior observed in the two- and three-layered inhomogeneous membranes. This indicates that the structural composition of the membrane (single vs. multilayered) plays a crucial role in determining how fractional-order parameters affect wave dispersion.
- For both single- and multi-layered membranes, the fundamental mode increases with an increase in the fractional-order, especially within the long-wave and low-frequency propagation range. This suggests that fractional-order infusion can be effectively used to control and optimize wave dispersion in various engineering applications.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Ewing, W.M.; Jardetzky, W.S.; Press, F.; Beiser, A. Elastic Waves in Layered Media. Phys. Today 1957, 10, 27–28. [Google Scholar] [CrossRef]
- Asghar, S.; Zaman, F.; Masud, A. Dispersion of Love-type waves in a vertically inhomogeneous intermediate layer. J. Phys. Earth 1990, 38, 213–221. [Google Scholar] [CrossRef]
- Mubaraki, A.M.; Althobaiti, S.; Nuruddeen, R.I. Heat and wave interactions in a thermoelastic coaxial solid cylinder driven by laser heating sources. Case Stud. Therm. Eng. 2022, 38, 102338. [Google Scholar] [CrossRef]
- Althobaiti, S.; Mubaraki, A.; Nuruddeen, R.I.; Gomez-Aguilar, J.F. Wave propagation in an elastic coaxial hollow cylinder when exposed to thermal heating and external load. Results Phys. 2022, 38, 105582. [Google Scholar] [CrossRef]
- Nuruddeen, R.I.; Nawaz, R.; Zaigham Zia, Q.M. Asymptotic approach to anti-plane dynamic problem of asymmetric three-layered composite plate. Math. Methods Appl. Sci. 2021, 44, 10933–10947. [Google Scholar] [CrossRef]
- Wolfram MathWorld Helmholtz Differential Equation-Circular Cylindrical Coordinates. Available online: https://mathworld.wolfram.com/HelmholtzDifferentialEquationCircularCylindricalCoordinates.html (accessed on 24 September 2023).
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–701. [Google Scholar] [CrossRef]
- Kukla, S.; Siedlecka, U. Time-fractional heat conduction in a finite composite cylinder with heat source. J. Appl. Math. Comput. Mech. 2020, 19, 85–94. [Google Scholar] [CrossRef]
- Iyiola, O.S.; Zaman, F.D. A note on analytical solutions of nonlinear fractional 2-D heat equation with non-local integral terms. Pramana 2016, 87, 1–6. [Google Scholar] [CrossRef]
- Anwar, A.M.O.; Jarad, F.; Baleanu, D.; Ayaz, F. Fractional Caputo heat equation within the double Laplace transform. Rom. J. Phys. 2013, 58, 15–22. [Google Scholar]
- Haberman, R. Elementary Applied Differential Equations; A Paramaout Communication Company: Englewood Cliffs, NJ, USA, 1987. [Google Scholar]
- Hammad, M.A.; AlSharif, S.; Khalil, R.; Shmasneh, A. Fractional Bessel differential equation and fractional Bessel functions. Ital. J. Pure Appl. Math.-N 2022, 47, 521–531. [Google Scholar]
- Dai, H.-H.; Kaplunov, J.; Prikachikov, D.A. Long-wave model for the surface wave in a coated half-space. Proc. R. Soc. A Math. Phy. Eng. Sci. 2010, 466, 3097–3116. [Google Scholar] [CrossRef]
- Kaplunov, J.; Prikazchikova, L.; Alkinidri, M. Antiplane shear of an asymmetric sandwich plate. Contin. Mech. Thermodyn. 2021, 33, 1247–1262. [Google Scholar] [CrossRef]
- Mubaraki, A.; Prikazchikov, D.; Kudaibergenov, A. Explicit model for surface waves on an elastic half-space coated by a thin vertically inhomogeneous layer. Dyn. Syst. Theo. Appl. 2019, 267–275. [Google Scholar] [CrossRef]
- Horgan, C.O. Anti-plane shear deformations in linear and nonlinear solid mechanics. SIAM Rev. 1995, 37, 53–81. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, M.; Xi, X.; Tian, H.; Yang, R. Multi-chimera states in a higher-order network of FitzHugh–Nagumo oscillators. Eur. Phys. J. Spec. Top. 2024, 233, 779–786. [Google Scholar] [CrossRef]
- Ba, Z.; Wu, M.; Liang, J. 3D dynamic responses of a multi-layered transversely isotropic saturated half-space under concentrated forces and pore pressure. Appl. Math. Model. 2020, 80, 859–878. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, S.; Zhang, L.; Pan, G.; Yu, J. Multi-UUV maneuvering counter-game for dynamic target scenario based on fractional-order recurrent neural network. IEEE Trans. Cybern. 2023, 53, 4015–4028. [Google Scholar] [CrossRef] [PubMed]
- Kai, Y.; Chen, S.; Zhang, K.; Yin, Z. Exact solutions and dynamic properties of a nonlinear fourth-order time-fractional partial differential equation. Waves Random Complex Media 2022, 1–12. [Google Scholar] [CrossRef]
- Wang, C.; Wen, P.; Huang, Y.; Chen, K.; Xu, K. Terahertz dual-band bandpass filter based on spoof surface plasmon polaritons with wide upper stopband suppression. Opt. Express 2024, 32, 22748–22758. [Google Scholar] [CrossRef]
- Mubaraki, A.M.; Nuruddeen, R.I.; Gomez-Aguilar, J.F. Closed-form asymptotic solution for the transport of chlorine concentration in composite pipes. Phys. Scr. 2024, 99, 075201. [Google Scholar] [CrossRef]
- Sahin, O.; Erbas, B.; Kaplunov, J.; Savsek, T. The lowest vibration modes of an elastic beam composed of alternating stiff and soft components. Arch. Appl. Mech. 2020, 90, 339–352. [Google Scholar] [CrossRef]
- Abd-Alla, A.M.; Abo-Dahab, S.M.; Khan, A. Rotational effects on magneto-thermoelastic Stoneley, Love, and Rayleigh waves in fibre-reinforced anisotropic general viscoelastic media of higher order. Comput. Mater. Contin. 2017, 53, 49–72. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Seyfi, A. A wave propagation study for porous metal foam beams resting on an elastic foundation. Waves Random Complex Media 2021, 31, 1–15. [Google Scholar] [CrossRef]
- Liu, Z.; Qi, H. Dynamic anti-plane behavior of rare earth giant magnetostrictive medium with a circular cavity defect in semi-space. Sci. Rep. 2021, 11, 13442. [Google Scholar] [CrossRef] [PubMed]
- Mandi, A.; Kundu, S.; Chandra, P.; Pati, P. An analytic study on the dispersion of Love wave propagation in double layers lying over inhomogeneous half-space. J. Solid Mech. 2019, 11, 570–580. [Google Scholar] [CrossRef]
- Zenkour, A.M.; Radwan, A.F. Analysis of multilayered composite plates resting on elastic foundations in thermal environment using a hyperbolic model. J. Braz. Soc. Mech. Sci. 2017, 39, 2801–2816. [Google Scholar] [CrossRef]
- Afsar, H.; Peiwei, G.; Alshamrani, A.; Aldandani, M.; Alam, M.M.; Aljohani, A.F. Dimensionless dynamics: Multipeak and envelope solitons in perturbed nonlinear Schrodinger equation with Kerr law nonlinearity. AIP Phys. Fluids 2024, 36, 067126. [Google Scholar] [CrossRef]
- Erbas, B.; Kaplunov, J.; Nobili, A.; Kilic, G. Dispersion of elastic waves in a layer interacting with a Winkler foundation. J. Acoust Soc. Am. 2018, 144, 2918–2925. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Zaman, F.D. Exact and asymptotic solutions of the elastic wave propagation problem in a rod. Int. J. Pure Appl. Math. 2006, 27, 123–127. [Google Scholar]
- Afsar, H.; Akbar, Y. Energy distribution of bifurcated waveguide structure with planar and non-planar surfaces. Math. Mech. Solids 2022, 28, 1155–1169. [Google Scholar] [CrossRef]
- Kaplunov, J.D.; Kossovich, L.Y.; Nolde, E.V. Dynamics of Thin Walled Elastic Bodies; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mubaraki, A.M.; Nuruddeen, R.I.; Nawaz, R.; Nawaz, T. Modeling the Dispersion of Waves in a Multilayered Inhomogeneous Membrane with Fractional-Order Infusion. Fractal Fract. 2024, 8, 445. https://doi.org/10.3390/fractalfract8080445
Mubaraki AM, Nuruddeen RI, Nawaz R, Nawaz T. Modeling the Dispersion of Waves in a Multilayered Inhomogeneous Membrane with Fractional-Order Infusion. Fractal and Fractional. 2024; 8(8):445. https://doi.org/10.3390/fractalfract8080445
Chicago/Turabian StyleMubaraki, Ali M., Rahmatullah Ibrahim Nuruddeen, Rab Nawaz, and Tayyab Nawaz. 2024. "Modeling the Dispersion of Waves in a Multilayered Inhomogeneous Membrane with Fractional-Order Infusion" Fractal and Fractional 8, no. 8: 445. https://doi.org/10.3390/fractalfract8080445
APA StyleMubaraki, A. M., Nuruddeen, R. I., Nawaz, R., & Nawaz, T. (2024). Modeling the Dispersion of Waves in a Multilayered Inhomogeneous Membrane with Fractional-Order Infusion. Fractal and Fractional, 8(8), 445. https://doi.org/10.3390/fractalfract8080445