Positive Solutions and Their Existence of a Nonlinear Hadamard Fractional-Order Differential Equation with a Singular Source Item Using Spectral Analysis
Abstract
:1. Introduction
2. Preliminaries and Lemmas
- (i)
- (ii)
3. Principal Results
4. Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boulham, I.; Boubakir, A.; Labiod, S. Fuzzy L1 adaptive controller for chaos synchronization of uncertain fractional-order chaotic systems with input nonlinearities. Tran. Inst. Meas. Cont. 2023, 45, 2310–2323. [Google Scholar] [CrossRef]
- Wu, J.; Wang, W.; Cao, Y.; Liu, S.; Zhang, Q.; Chu, W. A novel nonlinear fractional viscoelastic–viscoplastic damage creep model for rock-like geomaterials. Compu. Geot. 2023, 163, 105726. [Google Scholar] [CrossRef]
- Ma, W.; Ma, N.; Dai, C.; Chen, Y.; Wang, X. Fractional modeling and optimal control strategies for mutated COVID-19 pandemic. Math. Meth. Appl. Sci. 2023. [Google Scholar] [CrossRef]
- Yang, B.; Zhu, T.; Zhang, X.; Wang, J.; Shu, H.; Li, S.; He, T.; Yang, L.; Yu, T. Design and implementation of Battery/SMES hybrid energy storage systems used in electric vehicles: A nonlinear robust fractional-order control approach. Energy 2020, 191, 116510. [Google Scholar] [CrossRef]
- Ouhsaine, L.; Boukal, Y.; Ganaoui, M.; Darouach, M.; Zasadzinski, M.; Mimet, A.; Eddine Radhy, N. A General fractional-order heat transfer model for Photovoltaic/Thermal hybrid systems and its observer design. Energy Procedia 2017, 139, 49–54. [Google Scholar]
- Tomasz, P.; Jacek, G. Signal propagation in electromagnetic media described by fractional-order models. Commun. Nonlinear Sci. Nume. Simul. 2020, 82, 105029. [Google Scholar]
- Piotrowska, E.; Rogowski, K. Analysis of fractional electrical circuit using Caputo and Conformable derivative definitions. Non-Integer Order Calc. Appl. 2019, 15, 183–194. [Google Scholar]
- Huang, P.; Zhang, J.; Damascene, N.; Dong, C.; Wang, Z. A fractional order viscoelastic-plastic creep model for coal sample considering initial damage accumulation. Alex. Engi. J. 2021, 60, 3921–3930. [Google Scholar] [CrossRef]
- Jena, R.; Chakraverty, S.; Rezazadeh, H.; Domiri Ganji, D. On the solution of time- fractional dynamical model of Brusselator reaction-diffusion system arising in chemical reactions. Bull. Sci. Math. 2020, 43, 3903–3913. [Google Scholar] [CrossRef]
- Munoz-Pacheco, J.; Posadas-Castillo, C.; Zambrano-Serrano, E. The Effect of a Non-Local Fractional Operator in an Asymmetrical Glucose-Insulin Regulatory System: Analysis, Synchronization and Electronic Implementation. Symmetry 2020, 12, 1395. [Google Scholar] [CrossRef]
- Yusuf, A.; Acay, B.; Tasiu, U.; Mustafa, I.; Baleanu, D. Mathematical modeling of pine wilt disease with Caputo fractional operator. Chaos Solitons Fractals 2021, 143, 110569. [Google Scholar] [CrossRef]
- Guo, L.; Li, C.; Zhao, J. Existence of monotone positive solutions for Caputo-Hadamard nonlinear fractional differential equation with infinite-point boundary value conditions. Symmetry 2023, 15, 970. [Google Scholar] [CrossRef]
- Li, C.; Zhu, C.; Lim, C.; Li, S. Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading. Appl. Math. Mech. Engl. Ed. 2022, 43, 1821–1840. [Google Scholar] [CrossRef]
- Guo, L.; Cai, J.; Xie, Z.; Li, C. Mechanical responses of symmetric straight and curved composite microbeams. J. Vibr. Eng. Technol. 2024, 12, 1537–1549. [Google Scholar] [CrossRef]
- Li, C.; Zhu, C.; Zhang, N.; Sui, S.; Zhao, J. Free vibration of self-powered nanoribbons subjected to thermal-mechanical-electrical fields based on a nonlocal strain gradient theory. Appl. Math. Model. 2022, 110, 583–602. [Google Scholar] [CrossRef]
- Chabane, F.; Abbas, S.; Benbachir, M.; Benchohra, M.; N’Guérékata, G. Existence of Concave Positive Solutions for Nonlinear Fractional Differential Equation with p-Laplacian Operator. Viet. J. Math. 2023, 51, 505–543. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, J.; Liao, L.; Liu, L. Existence of multiple positive solutions for a class of infinite-point singular p-Laplacian fractional differential equation with singular source terms. Nonli. Anal. Model. Control 2022, 27, 609–629. [Google Scholar] [CrossRef]
- Xu, J.; Liu, J.; O’Regan, D. Solvability for a Hadamard-type fractional integral boundary value problem. Nonli. Anal. Model. Control 2023, 4, 1–25. [Google Scholar] [CrossRef]
- Arul, R.; Karthikeyan, P. Integral boundary value problems for implicit fractional differential equations involving Hadamard and Caputo-Hadamard fractional derivatives. Krag. J. Math. 2019, 45, 331–341. [Google Scholar]
- Wang, J.; Feckan, M.; Zhou, Y. Fractional order iterative functional differential equations with parameter. Appl. Math. Model. 2013, 37, 6055–6067. [Google Scholar] [CrossRef]
- Ardjouni, A.; Djoudi, A. Positive solutions for nonlinear Caputo-Hadamard fractional differential equations with integral boundary conditions. Open J. Math. Anal. 2019, 3, 62–69. [Google Scholar] [CrossRef]
- Zhang, S. Positive solutions for a class of singular fractional differential equation with infinite-point boundary value conditions. Appl. Math. Lett. 2015, 39, 22–27. [Google Scholar] [CrossRef]
- Boutiara, A.; Benbachir, M.; Guerbati, K. Boundary value problem for nonlinear Caputo-Hadamard fractional differential equation with Hadamard fractional integral and anti-periodic conditions. Facta. Univer. Seri. Math. Infor. 2021, 36, 735–748. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; Elsevier Science BV: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Naseer, A. Positive solution for a Hadamard fractional singular boundary value problem of order μ∈(2,3). arXiv 2021, arXiv:2108.13127. [Google Scholar]
- Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones; Academic Press: Boston, MA, USA, 1988. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Guo, L. Positive Solutions and Their Existence of a Nonlinear Hadamard Fractional-Order Differential Equation with a Singular Source Item Using Spectral Analysis. Fractal Fract. 2024, 8, 377. https://doi.org/10.3390/fractalfract8070377
Li C, Guo L. Positive Solutions and Their Existence of a Nonlinear Hadamard Fractional-Order Differential Equation with a Singular Source Item Using Spectral Analysis. Fractal and Fractional. 2024; 8(7):377. https://doi.org/10.3390/fractalfract8070377
Chicago/Turabian StyleLi, Cheng, and Limin Guo. 2024. "Positive Solutions and Their Existence of a Nonlinear Hadamard Fractional-Order Differential Equation with a Singular Source Item Using Spectral Analysis" Fractal and Fractional 8, no. 7: 377. https://doi.org/10.3390/fractalfract8070377
APA StyleLi, C., & Guo, L. (2024). Positive Solutions and Their Existence of a Nonlinear Hadamard Fractional-Order Differential Equation with a Singular Source Item Using Spectral Analysis. Fractal and Fractional, 8(7), 377. https://doi.org/10.3390/fractalfract8070377