A Fractal Adsorption Model on Methane in Coal with Temperature Effect Dependence
Abstract
:1. Introduction
2. Principle and Methodology
2.1. Principle
2.2. Methodology
2.2.1. Coverage of Homogeneous Pore Surface
2.2.2. Coverage of Heterogeneous Pore Surface
2.2.3. Fractal Adsorption Model with Temperature Effect Dependence
3. Sample and Experiment
3.1. Sample
3.2. Measurement of Pore Structure Parameters
3.3. Methane Isothermal Adsorption Experiment
3.4. Calculation of Pore Fractal Dimension
4. Results
4.1. Pore Structure Parameter Analysis
4.2. Estimation of Fractal Dimension (Df) for Coal Pore
4.3. Langmuir Adsorption Equation Fitting
4.4. Fractal Langmuir Adsorption Equation Fitting
5. Discussion
5.1. Estimation of Attenuation Coefficient
5.2. Accuracy Verification of Fractal Adsorption Model with Temperature Effect Dependence
5.3. Application
6. Conclusions
- The pore structure heterogeneity in coal manifests pronounced fractal features that can be described using the fractal dimension (Df), and the fractal dimensions (Df) for the gas coal and coking coal are 2.6279 and 2.93, respectively.
- The fractal adsorption constants, Vf and Pf, corresponding to coal samples at 30 °C, 50 °C, and 70 °C are calculated, respectively, and n is used to characterize the attenuation coefficient of Vf with increasing temperature. The adsorption capacity attenuation adsorptions of gas coal and coking coal are −0.006 and −0.004, respectively.
- The fractal equation fitting demonstrates a higher adjusted R2, compared to the Langmuir equation fitting. In addition, under temperature conditions of 30 °C, 50 °C, and 70 °C, the absolute errors between actual and predicted Vf values for CY and XQ coal samples range from 0.06 to 1.08 cm3/g, while relative errors range from 0.001 to 0.024, indicating that the proposed fractal equation demonstrates a higher accuracy than the traditional Langmuir equation.
- Based on the relationship between the temperature gradient and the buried depth of coal reservoirs, a prediction method of methane adsorption in deep coal reservoirs is established to furnish a reference point to aid in the exploration and development efforts of unconventional gas.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.G.; Ranjith, P.G.; Perera, M.S.A.; Ranathunga, A.S.; Haque, A. Gas transportation and enhanced coalbed methane recovery processes in deep coal seams: A review. Energy Fuels 2016, 30, 8832–8849. [Google Scholar] [CrossRef]
- Li, L.; Liu, D.; Cai, Y.; Wang, Y.; Jia, Q. Coal structure and its implications for coalbed methane exploitation: A review. Energy Fuels 2020, 35, 86–110. [Google Scholar] [CrossRef]
- Liu, G.F.; Liu, H.; Xian, B.A.; Gao, D.L.; Wang, X.M.; Zhang, Z. Fuzzy pattern recognition model of geological sweetspot for coalbed methane development. Pet. Explor. Dev. 2023, 50, 924–933. [Google Scholar] [CrossRef]
- Sun, F.; Liu, D.; Cai, Y.; Qiu, Y. Coalification degree-pressure coupling control mechanism on gas adsorption/desorption in coalbed methane reservoirs. Energy 2023, 270, 126849. [Google Scholar] [CrossRef]
- Wang, F.; Yao, Y.; Wen, Z.; Sun, Q.; Yuan, X. Effect of water occurrences on methane adsorption capacity of coal: A comparison between bituminous coal and anthracite coal. Fuel 2020, 266, 117102. [Google Scholar] [CrossRef]
- Liu, G.F.; Li, B.L.; Zhang, Z.; Liu, H.; Xiong, X.; Wang, X. Effects of liquid CO2 phase transition fracturing on methane adsorption of coal. Energy Fuels 2023, 37, 1949–1961. [Google Scholar] [CrossRef]
- Zhou, D.; Wu, C.; Song, Y.; Xian, B.; Gao, B.; Zhang, Z.; Liu, G.F. Evolution characteristic and implication of coalbed methane desorption stages division for tectonically deformed coals. Transp. Porous Media 2022, 141, 713–736. [Google Scholar] [CrossRef]
- Meng, Y.; Tang, D.; Xu, H.; Qu, Y.; Li, Y.; Zhang, W. Division of coalbed methane desorption stages and its significance. Pet. Explor. Dev. 2014, 41, 671–677. [Google Scholar] [CrossRef]
- Connell, L.D.; Pan, Z.; Camilleri, M. The variation in produced gas composition from mixed gas coal seam reservoirs. Int. J. Coal Geol. 2019, 201, 62–75. [Google Scholar] [CrossRef]
- Yu, B.; Cheng, P. A fractal permeability model for bi-dispersed porous media. Int. J. Heat Mass Transf. 2002, 45, 2983–2993. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, J.; Cai, J.; Feng, S.; Feng, X.; Qiao, J. A mathematical model for determining oil migration characteristics in low-permeability porous media based on fractal theory. Transp. Porous Media 2019, 129, 633–652. [Google Scholar] [CrossRef]
- Guo, H.; Yuan, L.; Cheng, Y.; Wang, K.; Xu, C. Experimental investigation on coal pore and fracture characteristics based on fractal theory. Powder Technol. 2019, 346, 341–349. [Google Scholar] [CrossRef]
- Liu, X.; Kong, X.; Nie, B.; Song, D.; He, X.; Wang, L. Pore Fractal dimensions of bituminous coal reservoirs in north china and their impact on gas adsorption capacity. Nat. Resour. Res. 2021, 30, 4585–4596. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, G.F.; Wang, X.M.; Lv, R.S.; Liu, H.; Lin, J.; Barakos, G.; Chang, P. A fractal Langmuir adsorption equation on coal: Principle, methodology and implication. Chem. Eng. J. 2024, 488, 150869. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, G.F.; Chang, P.; Wang, X.M.; Lin, J. Fractal characteristics for coal chemical structure: Principle, methodology and implication. Chaos Solitons Fractals 2023, 173, 113699. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, H.; Yu, F.; Shi, B.; Tang, H. Fractal adsorption characteristics of complex molecules on particles-A case study of dyes onto granular activated carbon (GAC). Physicochem. Eng. Asp. 2007, 299, 224–231. [Google Scholar]
- Karacan, C.O.; Okandan, E. Adsorption and gas transport in coal microstructure: Investigation and evaluation by quantitative X-ray CT imaging. Fuel 2001, 80, 509–520. [Google Scholar] [CrossRef]
- Lu, G.; Wang, J.; Wei, C.; Song, Y.; Yan, G.; Zhang, J.; Cheng, G. Pore fractal model applicability and fractal characteristics of seepage and adsorption pores in middle rank tectonic deformed coals from the Huaibei coal field. Pet. Sci. Eng. 2018, 171, 808–817. [Google Scholar]
- Wang, J.G.; Hu, B.; Wu, D.; Dou, F.; Wang, X. A multiscale fractal transport model with multilayer sorption and effective porosity effects. Transp. Porous Media 2019, 129, 25–51. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, G.; Wang, X.; Li, B.; Liu, H. Fractal characterization on fracture volume in coal based on CT scanning: Principle, methodology, and implication. Fractals 2022, 30, 2250124. [Google Scholar] [CrossRef]
- Hall, F.E.; Zhou, C.; Gasem, K.A.M.; Robinson, R.L., Jr.; Yee, D. Adsorption of pure methane, nitrogen, and carbon dioxide and their binary mixtures on wet Fruitland coal. In Proceedings of the SPE Eastern Regional Meeting, Charleston, WV, USA, 8–10 November 1994; p. 29194. [Google Scholar]
- Alafnan, S.; Awotunde, A.; Glatz, G.; Adjei, S.; Alrumaih, I.; Gowida, A. Langmuir adsorption isotherm in unconventional resources: Applicability and limitations. J. Pet. Sci. Eng. 2021, 207, 109172. [Google Scholar] [CrossRef]
- Larsson, A.O. Online, all the time? A quantitative assessment of the permanent campaign on Facebook. New Media Soc. 2016, 18, 274–292. [Google Scholar] [CrossRef]
- He, J.; Shi, Y.; Ahn, S.; Kang, J.W.; Lee, C.H. Adsorption and desorption of CO2 on Korean coal under subcritical to supercritical conditions. J. Phys. Chem. B 2010, 114, 4854–4861. [Google Scholar] [CrossRef]
- Pan, J.; Hou, Q.; Ju, Y.; Bai, H.; Zhao, Y. Coalbed methane sorption related to coal deformation structures at different temperatures and pressures. Fuel 2012, 102, 760–765. [Google Scholar] [CrossRef]
- Qiao, K.; Zhong, S.; Tang, S.; Yang, K.; Yue, H.; Ma, K.; Liang, B. Influence of pore structure on thermal stress distribution inside coal particles during primary fragmentation. Particuology 2024, 85, 49–61. [Google Scholar] [CrossRef]
- Teng, T.; Wang, J.G.; Gao, F.; Ju, Y.; Jiang, C. A thermally sensitive permeability model for coal-gas interactions including thermal fracturing and volatilization. J. Nat. Gas Sci. Eng. 2016, 32, 319–333. [Google Scholar] [CrossRef]
- Kang, J.; Elsworth, D.; Fu, X.; Liang, S.; Chen, H. Contribution of thermal expansion on gas adsorption to coal sorption-induced swelling. Chem. Eng. J. 2022, 432, 134427. [Google Scholar] [CrossRef]
- Mukherjee, M.; Misra, S. A review of experimental research on Enhanced Coal Bed Methane (ECBM) recovery via CO2 sequestration. Earth-Sci. Rev. 2018, 179, 392–410. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, X.; Yue, G.; Kang, B.; Xie, C.; Li, X. Physical simulation of temperature influence on methane sorption and kinetics in coal: Benefits of temperature under 273.15 K. Fuel 2015, 158, 207–216. [Google Scholar] [CrossRef]
- Busch, A.; Gensterblum, Y. CBM and CO2-ECBM related sorption processes in coal: A review. Int. J. Coal Geol. 2011, 87, 49–71. [Google Scholar] [CrossRef]
- Bolis, V. Fundamentals in Adsorption at the Solid-Gas Interface. Calorim. Therm. Methods Catal. 2013, 3–50. [Google Scholar] [CrossRef]
- Berezin, G.I.; Kiselev, A.V. Adsorbate-adsorbate association on a homogenous surface of a nonspecific adsorbent. J. Colloid Interface Sci. 1972, 38, 227–233. [Google Scholar] [CrossRef]
- Yan, M.; Bai, Y.; Li, S.G.; Lin, H.F.; Yan, D.J.; Shu, C.M. Factors influencing the gas adsorption thermodynamic characteristics of low-rank coal. Fuel 2019, 248, 117–126. [Google Scholar] [CrossRef]
- Rahman, N.; Raheem, A. Adsorption of Cd (II) ions on magnetic graphene oxide/cellulose modified with β-cyclodextrin: Analytical interpretation via statistical physics modeling and fractal like kinetic approach. Environ. Res. 2024, 243, 117868. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wang, Y.; Yan, F.; Si, G.; Lin, B. Evolution characteristics of coal microstructure and its influence on methane adsorption capacity under high temperature pyrolysis. Energy 2022, 254, 124262. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, X.; Pan, J.; Deng, Z. Effect of N2/CO2 injection and alternate injection on volume swelling/shrinkage strain of coal. Energy 2023, 275, 127377. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Liu, S.; Li, W.; Tang, X. Temperature effect on gas adsorption capacity in different sized pores of coal: Experiment and numerical modeling. J. Pet. Sci. Eng. 2018, 165, 821–830. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, C.; Zhao, C.; Zhang, T.; Lu, G.; Zou, M. Effects of nano-pore and macromolecule structure of coal samples on energy parameters variation during methane adsorption under different temperature and pressure. Fuel 2021, 289, 119804. [Google Scholar] [CrossRef]
- Ettinger, I.; Eremin, I.; Zimakov, B. Natural factors influencing coal sorption properties. I. Petrography and sorption properties of coals. Fuel 1966, 45, 267–275. [Google Scholar]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I.-Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Mandelbrot, B. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1983. [Google Scholar]
- Zhang, Z.; Liu, G.; Lin, J.; Barakos, G.; Chang, P. Fractal Evolution Characteristics on the Three-Dimensional Fractures in Coal Induced by CO2 Phase Transition Fracturing. Fractal Fract. 2024, 8, 273. [Google Scholar] [CrossRef]
- Ottiger, S.; Pini, R.; Storti, G.; Mazzotti, M. Competitive adsorption equilibria of CO2 and CH4 on a dry coal. Adsorption 2008, 14, 539–556. [Google Scholar] [CrossRef]
- Zhou, S.; Xue, H.; Ning, Y.; Guo, W.; Zhang, Q. Experimental study of supercritical methane adsorption in Longmaxi shale: Insights into the density of adsorbed methane. Fuel 2018, 211, 140–148. [Google Scholar] [CrossRef]
- Mandelbrot, B. Stochastic models for the Earth’s relief, the shape and the fractal dimension of the coastlines, and the number area rule for islands. Proc. Natl. Acad. Sci. USA 1975, 72, 3825–3828. [Google Scholar] [CrossRef]
- Luo, Y.; Xia, B.; Li, H.; Hu, H.; Wu, M.; Ji, K. Fractal permeability model for dual-porosity media embedded with natural tortuous fractures. Fuel 2021, 295, 120610. [Google Scholar] [CrossRef]
- Tian, J.; Liu, J.; Elsworth, D.; Leong, Y.K.; Li, W. An effective stress-dependent dual-fractal permeability model for coal considering multiple flow mechanisms. Fuel 2023, 334, 126800. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, G.F.; Wang, X.M.; Wang, M.S.; Li, B.L.; Liu, H. Fractal Characterization on Three-dimensional Fractur Tortuosity in Coal based on CT Scanning. Fractals 2023, 30, 2350034. [Google Scholar] [CrossRef]
- Liu, G.F.; Zhang, Z.; Cao, Y.X.; Wang, X.M.; Liu, H.; Li, B.L.; Si, N.; Guan, W.B. An analogical method on fractal dimension for Three-Dimensional fracture tortuosity in coal based on CT scanning. Fractals 2023, 31, 2350072. [Google Scholar] [CrossRef]
- Ning, S.; Xia, P.; Hao, F.; Tian, J.; Fu, Y.; Wang, K. Pore Fractal Characteristics between Marine and Marine–Continental Transitional Black Shales: A Case Study of Niutitang Formation and Longtan Formation. Fractal Fract. 2024, 8, 288. [Google Scholar] [CrossRef]
- Li, Y.; Lin, B.; Zhang, X. Effect of temperature on structural evolution and breakdown electrical characteristics of bituminous coal subjected to plasma breakage. Fuel 2022, 328, 125346. [Google Scholar] [CrossRef]
- Liu, D.; Zou, Z.; Cai, Y.; Qiu, Y.; Zhou, Y.; He, S. An updated study on CH4 isothermal adsorption and isosteric adsorption heat behaviors of variable rank coals. J. Nat. Gas Sci. Eng. 2021, 89, 103899. [Google Scholar] [CrossRef]
- Deng, J.; Kang, J.; Zhou, F.; Li, H.; Zhang, D.; Li, G. The adsorption heat of methane on coal: Comparison of theoretical and calorimetric heat and model of heat flow by microcalorimeter. Fuel 2019, 237, 81–90. [Google Scholar] [CrossRef]
- Zhang, L.; Aziz, N.; Ren, T.X.; Wang, Z. Influence of temperature on coal sorption characteristics and the theory of coal surface free energy. Procedia Eng. 2011, 26, 1430–1439. [Google Scholar] [CrossRef]
- Wu, S.; Tang, D.; Li, S.; Chen, H.; Wu, H. Coalbed methane adsorption behavior and its energy variation features under supercritical pressure and temperature conditions. J. Pet. Sci. Eng. 2016, 146, 726–734. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Wang, Z.; Zhou, L. Factors influencing the methane adsorption capacity of coal and adsorption heat variations. Energy Fuels 2023, 37, 13080–13092. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, S.; Zhao, W.; Wang, L. Intrinsic relationship between Langmuir sorption volume and pressure for coal: Experimental and thermodynamic modeling study. Fuel 2019, 241, 105–117. [Google Scholar] [CrossRef]
- Krooss, B.M.; Van, B.; Gensterblum, Y.; Siemons, N.; Pagnier, H.; David, P. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals. Int. J. Coal Geol. 2002, 51, 69–92. [Google Scholar] [CrossRef]
- Zhao, L.; Guanhua, N.; Yan, W.; Hehe, J.; Yongzan, W.; Haoran, D.; Mao, J. Semi-homogeneous model of coal based on 3D reconstruction of CT images and its seepage-deformation characteristics. Energy 2022, 259, 125044. [Google Scholar] [CrossRef]
- Liang, H.; Qi, Z.; Wang, S.; Huang, X.; Yan, W.; Yuan, Y.; Li, Z. Adsorption Models for Shale Gas: A Mini-Review. Energy Fuels 2022, 36, 12946–12960. [Google Scholar] [CrossRef]
- Zhang, M.; Fu, X. Influence of reservoir properties on the adsorption capacity and fractal features of shales from Qinshui coalfield. J. Pet. Sci. Eng. 2019, 177, 650–662. [Google Scholar] [CrossRef]
- Cheng, Y.W.; Shi, X.H.; Wen, J.S.; Wei, C. Fractal dimension of coal particles and their CH4 adsorption. Int. J. Min. Sci. Technol. 2012, 22, 855–858. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, D.; Tang, D.; Tang, S.; Huang, W. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals. Int. J. Coal Geol. 2008, 73, 27–42. [Google Scholar] [CrossRef]
- Levy, J.H.; Day, S.J.; Killingley, J.S. Methane capacities of Bowen Basin coals related to coal properties. Fuel 1997, 76, 813–819. [Google Scholar] [CrossRef]
- Ryan, B.; Lane, B.; Gentzis, T. Controls on methane adsorption capacity of lower cretaceous coals from Northeastern British Columbia, Canada: Part 2—Effect of temperature, pressure, maceral composition, and mineral matter on adsorption. Energy Sources 2003, 25, 1155–1170. [Google Scholar] [CrossRef]
- Jing, T.; Zhang, J.; Zhu, M.; Zhao, W.; Zhou, J.; Yin, Y. Methane adsorption in anthracite coal under different pressures and temperatures-A study combining isothermal adsorption and molecular simulation. Geofluids 2023, 2023, 1–15. [Google Scholar] [CrossRef]
- Altowilib, A.; Alsaihati, A.; Alhamood, H.; Alafnan, S.; Alarifi, S. Reserves estimation for coalbed methane reservoirs: A review. Sustainability 2020, 12, 10621. [Google Scholar] [CrossRef]
- Kirmani, F.; Raza, A.; Akram, M.; Gholami, R. Assessment of parameters effectiveness in the reserve estimation methods applicable to coal bed methane reservoirs. Pet. Res. 2023, 8, 44–53. [Google Scholar] [CrossRef]
- Qin, Y.; Moore, T.A.; Shen, J.; Yang, Z.; Shen, Y.; Wang, G. Resources and geology of coalbed methane in China: A review. Coal Geol. China 2020, 247–282. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Tang, S.; Elsworth, D. Re-evaluating adsorbed and free methane content in coal and its ad-and desorption processes analysis. Chem. Eng. J. 2022, 428, 131946. [Google Scholar] [CrossRef]
- Ren, Z.L.; Zhang, S.; Gao, S.L.; Cui, J.P.; Xiao, Y.Y.; Xiao, H. Tectonic thermal history and its significance on the formation of oil and gas accumulation and mineral deposit in Ordos Basin. Sci. China Ser. D Earth Sci. 2007, 50, 27–38. [Google Scholar] [CrossRef]
Collection Site | Sample Number | Proximate (wt %) | Ro,max (%) | Maceral Composition (vol %) | ||||
---|---|---|---|---|---|---|---|---|
Mad | Ad | Vdaf | Vitrinite | Exinite | Inertinite | |||
Caiyuan Coal Mine | CY | 2.35 | 8.15 | 34.57 | 0.86 | 71 | 18 | 8 |
Xiqu Coal Mine | XQ | 0.61 | 11.14 | 18.59 | 1.60 | 68 | trace | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, F.; Liu, G.; Zhang, Z.; Lv, R.; Xian, B.; Lin, J.; Barakos, G.; Chang, P. A Fractal Adsorption Model on Methane in Coal with Temperature Effect Dependence. Fractal Fract. 2024, 8, 370. https://doi.org/10.3390/fractalfract8070370
Guo F, Liu G, Zhang Z, Lv R, Xian B, Lin J, Barakos G, Chang P. A Fractal Adsorption Model on Methane in Coal with Temperature Effect Dependence. Fractal and Fractional. 2024; 8(7):370. https://doi.org/10.3390/fractalfract8070370
Chicago/Turabian StyleGuo, Fei, Gaofeng Liu, Zhen Zhang, Runsheng Lv, Baoan Xian, Jia Lin, George Barakos, and Ping Chang. 2024. "A Fractal Adsorption Model on Methane in Coal with Temperature Effect Dependence" Fractal and Fractional 8, no. 7: 370. https://doi.org/10.3390/fractalfract8070370
APA StyleGuo, F., Liu, G., Zhang, Z., Lv, R., Xian, B., Lin, J., Barakos, G., & Chang, P. (2024). A Fractal Adsorption Model on Methane in Coal with Temperature Effect Dependence. Fractal and Fractional, 8(7), 370. https://doi.org/10.3390/fractalfract8070370