Well-Posedness and Hyers–Ulam Stability of Fractional Stochastic Delay Systems Governed by the Rosenblatt Process
Abstract
:1. Introduction
2. Preliminaries
- (i)
- , .
- (ii)
- , .
- (i)
- for every pair ℓ, ,
- (ii)
- is a contraction mapping.
- (iii)
- is continuous and compact.then there is such that .
3. Main Results
- (G1)
- There exist a continuous function and a constant , where , such thatLet and .
- (G2)
- There exist a continuous function and a constant , where , such that
4. An Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obembe, A.D.; Hossain, M.E.; Abu-Khamsin, S.A. Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Pet. Sci. Eng. 2017, 152, 391–405. [Google Scholar] [CrossRef]
- Coimbra, C.F.M. Mechanics with variable-order differential operators. Ann. Phys. 2003, 12, 692–703. [Google Scholar] [CrossRef]
- Heymans, N.; Podlubny, I. Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol. Acta 2006, 45, 765–771. [Google Scholar] [CrossRef]
- Rajivganthi, C.; Thiagu, K.; Muthukumar, P.; Balasubramaniam, P. Existence of solutions and approximate controllability of impulsive fractional stochastic differential systems with infinite delay and Poisson jumps. Appl. Math. 2015, 60, 395–419. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science BV: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Muthukumar, P.; Rajivganthi, C. Approximate controllability of stochastic nonlinear third-order dispersion equation. Int. J. Robust Nonlinear Control 2014, 24, 585–594. [Google Scholar] [CrossRef]
- Ahmed, H.M. Semilinear neutral fractional stochastic integro-differential equations with nonlocal conditions. J. Theoret. Probab. 2015, 28, 667–680. [Google Scholar] [CrossRef]
- El-Borai, M.M.; EI-Nadi, K.E.S.; Fouad, H.A. On some fractional stochastic delay differential equations. Comput. Math. Appl. 2010, 59, 1165–1170. [Google Scholar] [CrossRef]
- Da Prato, G.; Zabczyk, J. Stochastic Equations in Infinite Dimensions; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Sakthivel, R.; Revathi, P.; Ren, Y. Existence of solutions for nonlinear fractional stochastic differential equations. Nonlinear Anal. 2013, 81, 70–86. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, Y.; Charalambous, T. Consensus of General Linear Multi-Agent Systems with Heterogeneous Input and Communication Delays. IEEE Control Syst. Lett. 2021, 5, 851–856. [Google Scholar] [CrossRef]
- Khusainov, D.Y.; Diblík, J.; Růžičková, M.; Lukáčová, J. Representation of a solution of the Cauchy problem for an oscillating system with pure delay. Nonlinear Oscil. 2008, 11, 276–285. [Google Scholar] [CrossRef]
- Elshenhab, A.M.; Wang, X.T. Representation of solutions for linear fractional systems with pure delay and multiple delays. Math. Meth. Appl. Sci. 2021, 44, 12835–12850. [Google Scholar] [CrossRef]
- Elshenhab, A.M.; Wang, X.T.; Mofarreh, F.; Bazighifan, O. Exact solutions and finite time stability of linear conformable fractional systems with pure delay. Comput. Model. Eng. Sci. 2023, 134, 927–940. [Google Scholar]
- Sathiyaraj, T.; Wang, J.; O’Regan, D. Controllability of stochastic nonlinear oscillating delay systems driven by the Rosenblatt distribution. Proc. Roy. Soc. Edinburgh Sect. A 2021, 151, 217–239. [Google Scholar] [CrossRef]
- Elshenhab, A.M.; Wang, X.T. Controllability and Hyers–Ulam stability of differential systems with pure delay. Mathematics 2022, 10, 1248. [Google Scholar] [CrossRef]
- Varun Bose, C.S.; Udhayakumar, R.; Elshenhab, A.M.; Sathish Kumar, M.; Ro, J.-S. Discussion on the Approximate Controllability of Hilfer Fractional Neutral Integro-Differential Inclusions via Almost Sectorial Operators. Fractal Fract. 2022, 6, 607. [Google Scholar] [CrossRef]
- Liang, C.; Wang, J.; O’Regan, D. Controllability of nonlinear delay oscillating systems. Electron. J. Qual. Theory Differ. Equ. 2017, 2017, 1–18. [Google Scholar] [CrossRef]
- Gao, F.; Oosterlee, C.W.; Zhang, J. A deep learning-based Monte Carlo simulation scheme for stochastic differential equations driven by fractional Brownian motion. Neurocomputing 2024, 574, 127245. [Google Scholar] [CrossRef]
- Feng, J.; Wang, X.; Liu, Q.; Li, Y.; Xu, Y. Deep learning-based parameter estimation of stochastic differential equations driven by fractional Brownian motions with measurement noise. Commun. Nonlinear Sci. Numer. Simul. 2023, 127, 107589. [Google Scholar] [CrossRef]
- El-Borai, M.M.; El-Nadi, K.E.S.; Ahmed, H.M.; El-Owaidy, H.M.; Ghanem, A.S.; Sakthivel, R. Existence and stability for fractional parabolic integro-partial differential equations with fractional Brownian motion and nonlocal condition. Cogent Math. Stat. 2018, 5, 1460030. [Google Scholar] [CrossRef]
- Rosenblatt, M. Independence and dependence. Proc. Berkeley Symp. Math. Statist. Probab. 1961, 2, 431–443. [Google Scholar]
- Shen, G.J.; Ren, Y. Neutral stochastic partial differential equations with delay driven by Rosenblatt process in a Hilbert space. J. Korean Stat. Soc. 2015, 4, 123–133. [Google Scholar] [CrossRef]
- Maejima, M.; Tudor, C.A. Selfsimilar processes with stationary increments in the second Wiener chaos. Probab. Math. Stat. 2012, 32, 167–186. [Google Scholar]
- Shen, G.; Sakthivel, R.; Ren, Y.; Li, M. Controllability and stability of fractional stochastic functional systems driven by Rosenblatt process. Collect. Math. 2020, 71, 63–82. [Google Scholar] [CrossRef]
- Maejima, M.; Tudor, C.A. On the distribution of the Rosenblatt process. Stat. Probab. Lett. 2013, 83, 1490–1495. [Google Scholar] [CrossRef]
- Tudor, C.A. Analysis of the Rosenblatt process. ESAIM Probab. Stat. 2008, 12, 230–257. [Google Scholar] [CrossRef]
- Lakhel, E.H.; McKibben, M. Controllability for time-dependent neutral stochastic functional differential equations with Rosenblatt process and impulses. Int. J. Control Autom. Syst. 2019, 17, 286–297. [Google Scholar] [CrossRef]
- Ulam, S. A Collection of Mathematical Problem; Interscience: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Nati. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef]
- Kahouli, O.; Albadran, S.; Elleuch, Z.; Bouteraa, Y.; Makhlouf, A.B. Stability results for neutral fractional stochastic differential equations. AIMS Math. 2024, 9, 3253–3263. [Google Scholar] [CrossRef]
- Ahmadova, A.; Mahmudov, N.I. Ulam-Hyers stability of Caputo type fractional stochastic neutral differential equations. Stat. Probab. Lett. 2021, 168, 108949. [Google Scholar] [CrossRef]
- Mchiri, L.; Makhlouf, A.B.; Rguigui, H. Ulam-Hyers stability of pantograph fractional stochastic differential equations. Math. Methods Appl. Sci. 2023, 46, 4134–4144. [Google Scholar] [CrossRef]
- Danfeng, L.; Xue, W.; Tomás, C.; Quanxin, Z. Ulam–Hyers stability of Caputo-type fractional fuzzy stochastic differential equations with delay. Commun. Nonlinear Sci. Numer. Simul. 2023, 121, 107229. [Google Scholar]
- Mattuvarkuzhali, C.; Balasubramaniam, P. pth Moment stability of fractional stochastic differential inclusion via resolvent operators driven by the Rosenblatt process and Poisson jumps with impulses. Stochastics 2020, 92, 1157–1174. [Google Scholar] [CrossRef]
- Wang, J.; Lv, L.; Zhou, Y. Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electron. J. Qual. Theory Differ. Equ. 2011, 2011, 1–10. [Google Scholar] [CrossRef]
- Hale, J.K. Ordinary Differential Equations; Wiley: New York, NY, USA, 1969. [Google Scholar]
- Smart, D.R. Fixed Point Theorems; University Press: Cambridge, UK, 1980. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlNemer, G.; Hosny, M.; Udhayakumar, R.; Elshenhab, A.M. Well-Posedness and Hyers–Ulam Stability of Fractional Stochastic Delay Systems Governed by the Rosenblatt Process. Fractal Fract. 2024, 8, 342. https://doi.org/10.3390/fractalfract8060342
AlNemer G, Hosny M, Udhayakumar R, Elshenhab AM. Well-Posedness and Hyers–Ulam Stability of Fractional Stochastic Delay Systems Governed by the Rosenblatt Process. Fractal and Fractional. 2024; 8(6):342. https://doi.org/10.3390/fractalfract8060342
Chicago/Turabian StyleAlNemer, Ghada, Mohamed Hosny, Ramalingam Udhayakumar, and Ahmed M. Elshenhab. 2024. "Well-Posedness and Hyers–Ulam Stability of Fractional Stochastic Delay Systems Governed by the Rosenblatt Process" Fractal and Fractional 8, no. 6: 342. https://doi.org/10.3390/fractalfract8060342
APA StyleAlNemer, G., Hosny, M., Udhayakumar, R., & Elshenhab, A. M. (2024). Well-Posedness and Hyers–Ulam Stability of Fractional Stochastic Delay Systems Governed by the Rosenblatt Process. Fractal and Fractional, 8(6), 342. https://doi.org/10.3390/fractalfract8060342