Quantifying the Pore Heterogeneity of Alkaline Lake Shale during Hydrous Pyrolysis by Using the Multifractal Method
Abstract
:1. Introduction
2. Geological Settings
3. Methodology
3.1. Samples
3.2. Hydrous Pyrolysis
3.3. XRD and Geochemical Analysis
3.4. Gas Adsorption
3.5. Fractal Analysis
4. Results
4.1. Petrophysical and Geochemical Characteristic
4.2. N2 Adsorption and Pore Structure
4.3. Fractal Characteristic
5. Discussion
5.1. The Relationship between Pore Structure and Multifractal Dimension during Pyrolysis
5.2. The Variation of Pore Heterogeneity and Multifractal Dimension during Hydrous Pyrolysis
5.3. The Influence of Mineralogy on Multifractal Dimension Based on Comparison
6. Conclusions
- (1)
- During the maturation process of shale, changes occur in the pore characteristics due to the conversion of organic matter and hydrocarbon generation, resulting in alterations in the heterogeneity of the pore structure. The distribution of the total pore volume spans from 0.005 cm3/g to 0.0116 cm3/g, while the specific surface area (SSA) ranges from 0.8345 to 2.2188. Mesopore volume fluctuates between 0.00821 cm3/g and 0.00347 cm3/g, whereas macropore volume varies from 0.00342 cm3/g to 0.00154 cm3/g. The trends of SSA, total pore volume, and mesopore volume exhibit similarity, with minimal volatility observed in the macropore volume. The distribution ranges of ΔD and D are 1.1883 to 1.3 and 2.46 to 2.4995, respectively, indicating opposite trends. With increasing pyrolysis temperature, both D1 and H gradually decrease, with ranges of 0.859 to 0.829 and 0.85 to 0.86355, respectively. These findings suggest that the pyrolysis process ultimately results in a more dispersed distribution of shale pore sizes and diminishes the connectivity among pores.
- (2)
- In the thermal maturation progression of shale rich in alkaline minerals, a direct correlation between pore radius distribution and pore volume is not evident. Mesopores exhibit a greater volume compared with macropores, with mesopores being more susceptible to diagenetic alterations and hydrocarbon modifications during the pyrolysis process. Consequently, the correlation between mesopore volume and other parameters related to pore heterogeneity and multifractal dimensions is more pronounced. Compared with macropores and mesopores, the mesopores (between 2–50 nm) exert a more significant influence on pore heterogeneity and multifractal characteristics.
- (3)
- The changes in multifractal dimensions and pore heterogeneity in alkaline lake shale occur in three consecutive stages. Firstly, the generation of hydrocarbons from organic matter, coupled with the neutralization of alkaline minerals by organic acids, initiates shale dissolution, thereby improving the pore structure. Secondly, a complex diagenetic process ensues, characterized by the mutual transformation between alkaline minerals and feldspar. Newly formed minerals typically precipitate around particle edges and fill intergranular pores. Quartz and feldspar tend to develop intragranular dissolution pores rather than experiencing erosion at the granular periphery in an alkaline environment. The filling of substantial intergranular pores, along with the formation of numerous intragranular small pores, accentuates pore heterogeneity. In the third stage, the transformative effects of dissolution on shale diminish significantly. The pyrolysis of hydrocarbons, such as bitumen, triggers the formation of small pores, thereby enhancing the complexity of the pore structure to some extent.
- (4)
- Diverse sedimentary environments contribute to variations in shale mineral composition. The presence of alkaline conditions and distinctive mineral constituents precipitates disparate diagenetic processes during hydrous pyrolysis, resulting in contrasting developments in pore structure heterogeneity and multifractal characteristics between alkaline lake shale and marine shale. Throughout the hydrous pyrolysis process, the evolution of alkaline lacustrine shale is predominantly governed by quartz, potassium feldspar, and clay minerals, further influenced by alkaline minerals such as hornblende and eitelite. In contrast, dolomite plays a primary role in regulating pore heterogeneity and multifractal dimensions in marine shale, with additional contributions from quartz and potassium feldspar.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dai, J.; Zou, C.; Liao, S.; Dong, D.; Ni, Y.; Huang, J.; Wu, W.; Gong, D.; Huang, S.; Hu, G. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin. Org. Geochem. 2014, 74, 3–12. [Google Scholar] [CrossRef]
- Mishra, S.; Mendhe, V.A.; Varma, A.K.; Kamble, A.D.; Sharma, S.; Bannerjee, M.; Kalpana, M.S. Influence of organic and inorganic content on fractal dimensions of Barakar and Barren Measures shale gas reservoirs of Raniganj basin, India. J. Nat. Gas. Sci. Eng. 2018, 49, 393–409. [Google Scholar] [CrossRef]
- Zou, C.; Yang, Z.; Dai, J.; Dong, D.; Zhang, B.; Wang, Y.; Deng, S.; Huang, J.; Liu, K.; Yang, C.; et al. The characteristics and significance of conventional and unconventional Sinian–Silurian gas systems in the Sichuan Basin, central China. Mar. Petrol. Geol. 2015, 64, 386–402. [Google Scholar] [CrossRef]
- Chandra, D.; Vishal, V. A critical review on pore to continuum scale imaging techniques for enhanced shale gas recovery. Earth-Sci. Rev. 2021, 217, 103638. [Google Scholar] [CrossRef]
- Curtis, M.E.; Cardott, B.J.; Sondergeld, C.H.; Rai, C.S. Development of organic porosity in the Woodford Shale with increasing thermal maturity. Int. J. Coal Geol. 2012, 103, 26–31. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Hu, Q.; Hao, L.; Wang, X.; Sheng, Y. Nanoscale Pore Network Evolution of Xiamaling Marine Shale during Organic Matter Maturation by Hydrous Pyrolysis. Energ. Fuel 2020, 34, 1548–1563. [Google Scholar] [CrossRef]
- Liu, K.; Ostadhassan, M.; Zou, J.; Gentzis, T.; Rezaee, R.; Bubach, B.; Carvajal-Ortiz, H. Multifractal analysis of gas adsorption isotherms for pore structure characterization of the Bakken Shale. Fuel 2018, 219, 296–311. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, X. Evolution of nanoporosity in organic-rich shales during thermal maturation. Fuel 2014, 129, 173–181. [Google Scholar] [CrossRef]
- Kang, Z.; Zhao, Y.; Yang, D. Review of oil shale in-situ conversion technology. Appl. Energ. 2020, 269, 115121. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Y.; Yang, D.; Kang, Z.; Zhao, J. Effect of pyrolysis on oil shale using superheated steam: A case study on the Fushun oil shale, China. Fuel 2019, 253, 1490–1498. [Google Scholar] [CrossRef]
- Zargari, S.; Canter, K.L.; Prasad, M. Porosity evolution in oil-prone source rocks. Fuel 2015, 153, 110–117. [Google Scholar] [CrossRef]
- Cao, T.; Deng, M.; Cao, Q.; Huang, Y.; Yu, Y.; Cao, X. Pore formation and evolution of organic-rich shale during the entire hydrocarbon generation process: Examination of artificially and naturally matured samples. J. Nat. Gas. Sci. Eng. 2021, 93, 104020. [Google Scholar] [CrossRef]
- Löhr, S.C.; Baruch, E.T.; Hall, P.A.; Kennedy, M.J. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter? Org. Geochem. 2015, 87, 119–132. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, Z.; Jiang, S.; Chang, J.; Li, X.; Wang, X.; Zhu, L. Pore Evolution and Formation Mechanism of Organic-Rich Shales in the Whole Process of Hydrocarbon Generation: Study of Artificial and Natural Shale Samples. Energ. Fuel 2020, 34, 332–347. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, B.; Pan, Z.; Hou, C.; Zuo, Q.; Sun, M. Effect of thermal maturity on shale pore structure: A combined study using extracted organic matter and bulk shale from Sichuan Basin, China. J. Nat. Gas. Sci. Eng. 2020, 74, 103089. [Google Scholar] [CrossRef]
- Fang, X.; Cai, Y.; Hu, Q.; Liu, D.; Gao, P.; Qian, Y.; Jia, Q. Hydrocarbon Retention and Its Effect on Pore Structure Evolution of Marine Shale Based on Pyrolysis Simulation Experiments. Energ. Fuel 2022, 36, 13556–13569. [Google Scholar] [CrossRef]
- Wu, W.; Liang, Z.; Xu, L.; Liu, Y.; Li, Y.; Tang, X.; Yin, Y.; Chen, Y. The Effect of Thermal Maturity on the Pore Structure Heterogeneity of Xiamaling Shale by Multifractal Analysis Theory: A Case from Pyrolysis Simulation Experiments. Minerals 2023, 13, 1340. [Google Scholar] [CrossRef]
- Liang, Z.; Jiang, Z.; Li, Z.; Song, Y.; Gao, F.; Liu, X.; Xiang, S. Nanopores Structure and Multifractal Characterization of Bulk Shale and Isolated Kerogen—An Application in Songliao Basin, China. Energ. Fuel 2021, 35, 5818–5842. [Google Scholar] [CrossRef]
- Wang, P.; Jiang, Z.; Ji, W.; Zhang, C.; Yuan, Y.; Chen, L.; Yin, L. Heterogeneity of intergranular, intraparticle and organic pores in Longmaxi shale in Sichuan Basin, South China: Evidence from SEM digital images and fractal and multifractal geometries. Mar. Petrol. Geol. 2016, 72, 122–138. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, J.; Hu, Q.; Wang, J.; Tian, T.; Chao, J.; Wang, M. Integrated NMR and FE-SEM methods for pore structure characterization of Shahejie shale from the Dongying Depression, Bohai Bay Basin. Mar. Petrol. Geol. 2019, 100, 85–94. [Google Scholar] [CrossRef]
- Enninful, H.R.N.B.; Schneider, D.; Kohns, R.; Enke, D.; Valiullin, R. A novel approach for advanced thermoporometry characterization of mesoporous solids: Transition kernels and the serially connected pore model. Micropor. Mesopor. Mat. 2020, 309, 110534. [Google Scholar] [CrossRef]
- Brun, M.; Lallemand, A.; Quinson, J.; Eyraud, C. A new method for the simultaneous determination of the size and shape of pores: The thermoporometry. Thermochim. Acta 1977, 21, 59–88. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Solano, N.; Bustin, R.M.; Bustin, A.M.M.; Chalmers, G.R.L.; He, L.; Melnichenko, Y.B.; Radliński, A.P.; Blach, T.P. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 2013, 103, 606–616. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, Y. Characterization of pore structure, gas adsorption, and spontaneous imbibition in shale gas reservoirs. J. Petrol. Sci. Eng. 2017, 159, 197–204. [Google Scholar] [CrossRef]
- Xu, L.; Yang, K.; Wei, H.; Liu, L.; Li, X.; Chen, L.; Xu, T.; Wang, X. Full-Scale Pore Structure Characteristics and the Main Controlling Factors of Mesoproterozoic Xiamaling Shale in Zhangjiakou, Hebei, China. Nanomaterials 2021, 11, 527. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yang, K.; Zhang, L.; Liu, L.; Jiang, Z.; Li, X. Organic-induced nanoscale pore structure and adsorption capacity variability during artificial thermal maturation: Pyrolysis study of the Mesoproterozoic Xiamaling marine shale from Zhangjiakou, Hebei, China. J. Petrol. Sci. Eng. 2021, 202, 108502. [Google Scholar] [CrossRef]
- Li, W.; Liu, H.; Song, X. Multifractal analysis of Hg pore size distributions of tectonically deformed coals. Int. J. Coal Geol. 2015, 144–145, 138–152. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Song, Y.; Zhao, Y.; Zhao, J.; Wang, D. Fractal analysis and its impact factors on pore structure of artificial cores based on the images obtained using magnetic resonance imaging. J. Appl. Geophys. 2012, 86, 70–81. [Google Scholar] [CrossRef]
- Lopes, R.; Betrouni, N. Fractal and multifractal analysis: A review. Med. Image Anal. 2009, 13, 634–649. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. Fractals: Form, Chance, and Dimension; W. H. Freeman: San Francisco, CA, USA, 1977; p. 365. ISBN 76057947. [Google Scholar]
- Gould, D.J.; Vadakkan, T.J.; PochÉ, R.A.; Dickinson, M.E. Multifractal and Lacunarity Analysis of Microvascular Morphology and Remodeling. Microcirculation 2011, 18, 136–151. [Google Scholar] [CrossRef]
- Radlinski, A.P.; Blach, T.; Vu, P.; Ji, Y.; de Campo, L.; Gilbert, E.P.; Regenauer-Lieb, K.; Mastalerz, M. Pore accessibility and trapping of methane in Marcellus Shale. Int. J. Coal Geol. 2021, 248, 103850. [Google Scholar] [CrossRef]
- Ghanizadeh, A.; Bhowmik, S.; Haeri-Ardakani, O.; Sanei, H.; Clarkson, C.R. A comparison of shale permeability coefficients derived using multiple non-steady-state measurement techniques: Examples from the Duvernay Formation, Alberta (Canada). Fuel 2015, 140, 371–387. [Google Scholar] [CrossRef]
- Muller, J. Characterization of pore space in chalk by multifractal analysis. J. Hydrol. 1996, 215–222. [Google Scholar] [CrossRef]
- Xie, S.; Cheng, Q.; Ling, Q.; Li, B.; Bao, Z.; Fan, P. Fractal and multifractal analysis of carbonate pore-scale digital images of petroleum reservoirs. Mar. Petrol. Geol. 2010, 27, 476–485. [Google Scholar] [CrossRef]
- Valenza, J.J.; Drenzek, N.; Marques, F.; Pagels, M.; Mastalerz, M. Geochemical controls on shale microstructure. Geology (Boulder) 2013, 41, 611–614. [Google Scholar] [CrossRef]
- Vernik, L.; Anantharamu, V. Estimating the elastic properties of mica and clay minerals. Geophysics 2020, 85, MR83–MR95. [Google Scholar] [CrossRef]
- Zou, J.; Rezaee, R.; Liu, K. Effect of Temperature on Methane Adsorption in Shale Gas Reservoirs. Energ. Fuel 2017, 31, 12081–12092. [Google Scholar] [CrossRef]
- Liu, K.; Ostadhassan, M.; Zhou, J.; Gentzis, T.; Rezaee, R. Nanoscale pore structure characterization of the Bakken shale in the USA. Fuel 2017, 209, 567–578. [Google Scholar] [CrossRef]
- Modica, C.J.; Lapierre, S.G. Estimation of kerogen porosity in source rocks as a function of thermal transformation: Example from the Mowry Shale in the Powder River Basin of Wyoming. Aapg Bull. 2012, 96, 87–108. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, N.; Borjigin, T.; Shen, B.; Xie, X.; Ma, Z.; Lu, C.; Yang, Y.; Yang, L.; Cheng, L.; et al. Integrated assessment of thermal maturity of the Upper Ordovician–Lower Silurian Wufeng–Longmaxi shale in Sichuan Basin, China. Mar. Petrol. Geol. 2019, 100, 447–465. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, C.; Jiang, F.; Hu, T.; Lv, J.; Zhang, C.; Guo, X.; Huang, L.; Hu, M.; Huang, R.; et al. Geological characteristics and shale oil potential of alkaline lacustrine source rock in Fengcheng Formation of the Mahu Sag, Junggar Basin, Western China. J. Petrol. Sci. Eng. 2022, 216, 110823. [Google Scholar] [CrossRef]
- Xia, L.; Cao, J.; Stüeken, E.E.; Zhi, D.; Wang, T.; Li, W. Unsynchronized evolution of salinity and pH of a Permian alkaline lake influenced by hydrothermal fluids: A multi-proxy geochemical study. Chem. Geol. 2020, 541, 119581. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, D.; Tang, D.; Tang, S.; Huang, W. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals. Int. J. Coal Geol. 2008, 73, 27–42. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, D.; Tang, D.; Tang, S.; Huang, W.; Liu, Z.; Che, Y. Fractal characterization of seepage-pores of coals from China: An investigation on permeability of coals. Comput. Geosci-Uk 2009, 35, 1159–1166. [Google Scholar] [CrossRef]
- Liu, B.; Mohammadi, M.; Ma, Z.; Bai, L.; Wang, L.; Xu, Y.; Ostadhassan, M.; Hemmati-Sarapardeh, A. Evolution of porosity in kerogen type I during hydrous and anhydrous pyrolysis: Experimental study, mechanistic understanding, and model development. Fuel 2023, 338, 127149. [Google Scholar] [CrossRef]
- Mastalerz, M.; Drobniak, A.; Stankiewicz, A.B. Origin, properties, and implications of solid bitumen in source-rock reservoirs: A review. Int. J. Coal Geol. 2018, 195, 14–36. [Google Scholar] [CrossRef]
- Bai, B.; Liang, J.; Dai, C.; He, W.; Bai, Y.; Chang, X.; Zheng, M.; Li, H.; Zong, H. Diagenesis of the Permian Fengcheng Formation in the Mahu Sag, Junggar Basin, China. Appl. Sci. 2023, 13, 13186. [Google Scholar] [CrossRef]
- Tang, Y.; Lv, Z.; He, W.; Qing, Y.; Song, X.; Cao, Q.; Qian, Y.; Zhu, T.; Li, N.; Li, X. Characteristics and Genesis of Alkaline Lacustrine Tight Oil Reservoirs in the Permian Fengcheng Formation in the Mahu Sag, Junggar Basin, NW China. Minerals 2022, 12, 979. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, Y.; Guo, X.; Huang, L.; Chang, Q. Diagenesis and reservoir space types of alkaline lake-type shale in Fengcheng Formation of Mahu Sag, Junggar Basin, China. Arabian J. Geosci. 2021, 14. [Google Scholar] [CrossRef]
- He, D.; Wu, S.; Zhao, L.; Zheng, M.; Li, D.; Lu, Y. Tectono-Depositional Setting and lts Evolution during Permian to Triassic around Mahu Sag, Junggar Basin. Xinjiang Petrol. Geol. 2018, 39, 35–47, (Chinese in English abstract). [Google Scholar]
- Zhang, H.; Zhang, Z.; Wang, Z.; Wang, Y.; Yang, R.; Zhu, T.; Luo, F.; Liu, K. Using Fractal Theory to Study the Influence of Movable Oil on the Pore Structure of Different Types of Shale: A Case Study of the Fengcheng Formation Shale in Well X of Mahu Sag, Junggar Basin, China. Fractal Fract. 2024, 8, 242, (Chinese in English abstract). [Google Scholar] [CrossRef]
- Tang, Y.; Cao, J.; He, W.; Guo, X.; Zhao, K.; Li, W. Discovery of shale oil in alkaline lacustrine basins: The Late Paleozoic Fengcheng Formation, Mahu Sag, Junggar Basin, China. Petrol. Sci. 2021, 18, 1281–1293. [Google Scholar] [CrossRef]
- Cao, J.; Xia, L.; Wang, T.; Zhi, D.; Tang, Y.; Li, W. An alkaline lake in the Late Paleozoic Ice Age (LPIA): A review and new insights into paleoenvironment and petroleum geology. Earth-Sci. Rev. 2020, 202, 103091. [Google Scholar] [CrossRef]
- Cao, J.; Lei, D.; Li, Y.; Tang, Y.; Abulimiti; Chang, Q.; Wang, T. Ancient high-guality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation, Junggar Basin. Acta Petrol. Sin. 2015, 36, 781–790, (Chinese in English abstract). [Google Scholar] [CrossRef]
- Zhu, X.; Cai, J.; Liu, Q.; Li, Z.; Zhang, X. Thresholds of petroleum content and pore diameter for petroleum mobility in shale. Aapg Bull. 2019, 103, 605–617. [Google Scholar] [CrossRef]
- Tao, K.; Cao, J.; Chen, X.; Nueraili, Z.; Hu, W.; Shi, C. Deep hydrocarbons in the northwestern Junggar Basin (NW China): Geochemistry, origin, and implications for the oil vs. gas generation potential of post-mature saline lacustrine source rocks. Mar. Petrol. Geol. 2019, 109, 623–640. [Google Scholar] [CrossRef]
- Zou, C.; Jin, X.; Zhu, R.; Gong, G.; Sun, L.; Dai, J.; Meng, D.; Wang, X.; Li, J.; Wu, S.; et al. Do Shale Pore Throats Have a Threshold Diameter for Oil Storage? Sci. Rep-Uk 2015, 5. [Google Scholar] [CrossRef]
- Jin, Z.; Liang, X.; Wang, X.; Zhu, R.; Zhang, Y.; Liu, G.; Gao, J. Shale Oil Enrichment Mechanism and sweet Spot Selection of Fengcheng Formation in Mahu Sag, Junggar Basin. Xinjiang Petrol. Geol. 2022, 43, 631–639, (Chinese in English abstract). [Google Scholar] [CrossRef]
- Liu, K.; Ostadhassan, M. Quantification of the microstructures of Bakken shale reservoirs using multi-fractal and lacunarity analysis. J. Nat. Gas. Sci. Eng. 2017, 39, 62–71. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Halsey, T.C.; Jensen, M.H.; Kadanoff, L.P.; Procaccia, I.I.; Shraiman, B.I. Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A Gen. Phys. 1986, 33, 1141–1151. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, R. Anisotropic pore structure of shale and gas injection-induced nanopore alteration: A small-angle neutron scattering study. Int. J. Coal Geol. 2020, 219, 103384. [Google Scholar] [CrossRef]
- Guan, M.; Liu, X.; Jin, Z.; Lai, J.; Sun, B.; Zhang, P.; Chen, K. The evolution of pore structure heterogeneity during thermal maturation in lacustrine shale pyrolysis. J. Anal. Appl. Pyrol. 2022, 163, 105501. [Google Scholar] [CrossRef]
- Fishcher, P.; Smith, W.R. Chaos, Fractals, and Dynamics; M. Dekker: New York, NY, USA, 1985; p. 261. ISBN 85004526. [Google Scholar]
- Chhabra, A.; Jensen, R.V. Direct determination of the f(α) singularity spectrum. Phys. Rev. Lett. 1989, 62, 1327–1330. [Google Scholar] [CrossRef]
- Klein, G.D. Geothermometry: Thermal history of sedimentary basins. Science 1989, 243, 1619. [Google Scholar] [CrossRef]
- Sing, K. The Use of Nitrogen Adsorption for the Characterisation of Porous Materials; Elsevier B.V.: Amsterdam, The Netherlands, 2001; Volume 187, pp. 3–9. [Google Scholar]
- Bakshi, T.; Vishal, V. A Review on the Role of Organic Matter in Gas Adsorption in Shale. Energ. Fuel 2021, 35, 15249–15264. [Google Scholar] [CrossRef]
- Lewan, M.D.; Roy, S. Role of water in hydrocarbon generation from Type-I kerogen in Mahogany oil shale of the Green River Formation. Org. Geochem. 2011, 42, 31–41. [Google Scholar] [CrossRef]
- Spigolon, A.L.D.; Lewan, M.D.; de Barros Penteado, H.L.; Coutinho, L.F.C.; Mendonça Filho, J.G. Evaluation of the petroleum composition and quality with increasing thermal maturity as simulated by hydrous pyrolysis: A case study using a Brazilian source rock with Type I kerogen. Org. Geochem. 2015, 83–84, 27–53. [Google Scholar] [CrossRef]
- Sun, L.; Tuo, J.; Zhang, M.; Wu, C.; Wang, Z.; Zheng, Y. Formation and development of the pore structure in Chang 7 member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis. Fuel 2015, 158, 549–557. [Google Scholar] [CrossRef]
- Yang, R.; He, S.; Hu, Q.; Sun, M.; Hu, D.; Yi, J. Applying SANS technique to characterize nano-scale pore structure of Longmaxi shale, Sichuan Basin (China). Fuel 2017, 197, 91–99. [Google Scholar] [CrossRef]
- Xiong, F.; Jiang, Z.; Li, P.; Wang, X.; Bi, H.; Li, Y.; Wang, Z.; Amooie, M.A.; Soltanian, M.R.; Moortgat, J. Pore structure of transitional shales in the Ordos Basin, NW China: Effects of composition on gas storage capacity. Fuel 2017, 206, 504–515. [Google Scholar] [CrossRef]
- Xu, S.; Xia, Y.; Lu, M.; Wei, W.; Wang, L.; Cai, J. Fractal Perspective on the Effects of the Acid–Rock Interaction on the Shale Pore Structure. Energ. Fuel 2023, 37, 6610–6618. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, X.; Wang, J.; Lin, W.; Han, D.; Wang, C.; Li, Y.; Xiong, Y.; Zhang, X. Pore structure and fractal characteristics of coal-bearing Cretaceous Nenjiang shales from Songliao Basin, Northeast China. J. Nat. Gas. Geosci. 2024. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, K.; Yu, L.; Liu, J.; Regenauer-Lieb, K. Assessment of multi-scale pore structures and pore connectivity domains of marine shales by fractal dimensions and correlation lengths. Fuel 2022, 330, 125463. [Google Scholar] [CrossRef]
- Song, W.; Liu, X.; Berto, F.; Razavi, N. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds. Materials 2018, 11, 661. [Google Scholar] [CrossRef]
- Zhang, P.; Lee, Y.I.; Zhang, J. A review of high-resolution X-ray computed tomography applied to petroleum geology and a case study. Micron 2019, 124, 102702. [Google Scholar] [CrossRef]
- Ferreiro, J.P.; Wilson, M.; Vázquez, E.V. Multifractal Description of Nitrogen Adsorption Isotherms. Vadose Zone J. 2009, 8, 209–219. [Google Scholar] [CrossRef]
- Tian, S.; Guo, Y.; Dong, Z.; Li, Z. Pore Microstructure and Multifractal Characterization of Lacustrine Oil-Prone Shale Using High-Resolution SEM: A Case Sample from Natural Qingshankou Shale. Fractal Fract. 2022, 6, 675. [Google Scholar] [CrossRef]
- Guan, M.; Liu, X.; Jin, Z.; Lai, J. The heterogeneity of pore structure in lacustrine shales: Insights from multifractal analysis using N2 adsorption and mercury intrusion. Mar. Petrol. Geol. 2020, 114, 104150. [Google Scholar] [CrossRef]
- Song, Z.; Liu, G.; Yang, W.; Zou, H.; Sun, M.; Wang, X. Multi-fractal distribution analysis for pore structure characterization of tight sandstone—A case study of the Upper Paleozoic tight formations in the Longdong District, Ordos Basin. Mar. Petrol. Geol. 2018, 92, 842–854. [Google Scholar] [CrossRef]
- Liu, K.; Ostadhassan, M.; Hackley, P.C.; Gentzis, T.; Zou, J.; Yuan, Y.; Carvajal-Ortiz, H.; Rezaee, R.; Bubach, B. Experimental Study on the Impact of Thermal Maturity on Shale Microstructures Using Hydrous Pyrolysis. Energ. Fuel 2019, 33, 9702–9719. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Ni, M.; Tang, W. Genesis of akaline lacustrine deposits in the Lower Permian FengchengFomation of the Mahu sag, northwestemn jungar Basin: Insights froma comparison with the worldwid alkaline lacustrine deposites. Acta Geol. Sin. 2020, 94, 1839–1852, (Chinese in English abstract). [Google Scholar] [CrossRef]
- Zhang, Z.; Qin, J.; Ba, Z.; Huang, W.; Han, M.; Gao, Y.; Wu, D. Diagenetic facies of the Fengcheng Formation tight reservoir in the alkaline lake sedimentary environment, the southern margin of Mahu Sag, Junggar Basin. Nat. Gas. Geosci. 2024. (Chinese in English abstract). [Google Scholar] [CrossRef]
- Hellmann, R. The albite-water system: Part II. The time-evolution of the stoichiometry of dissolution as a function of pH at 100,200, and 300 °C. Geochim. Cosmochim. Ac 1995, 59, 1669–1697. [Google Scholar] [CrossRef]
- Hamilton, J.P.; Pantano, C.G.; Brantley, S.L. Dissolution of albite glass and crystal. Geochim. Cosmochim. Ac 2000, 64, 2603–2615. [Google Scholar] [CrossRef]
- Wolery, K.G.K.A. The dissolution kinetics of quartz as a function of pH aud time at 70 °C. Geochim. Cosmochim. Ac 1988, 52, 43–53. [Google Scholar]
- Liu, B.; Wang, Y.; Tian, S.; Guo, Y.; Wang, L.; Yasin, Q.; Yang, J. Impact of thermal maturity on the diagenesis and porosity of lacustrine oil-prone shales: Insights from natural shale samples with thermal maturation in the oil generation window. Int. J. Coal Geol. 2022, 261, 104079. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Tang, W. Tectonic Setting and Environment of Alkaline Lacustrine Source Rocks in the Lower Permian Fengcheng Formation of Mahu Sag. Xinjiang Petrol. Geol. 2018, 39, 48–54, (Chinese in English abstract). [Google Scholar] [CrossRef]
- Fenter, P.; Sturchio, N.C. Mineral–water interfacial structures revealed by synchrotron X-ray scattering. Prog. Surf. Sci. 2004, 77, 171–258. [Google Scholar] [CrossRef]
- Knight, A.W.; Kalugin, N.G.; Coker, E.; Ilgen, A.G. Water properties under nano-scale confinement. Sci. Rep-Uk 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, R.; Cotte, S.; Cadel, E.; Malladi, S.; Karlsson, L.S.; Lozano-Perez, S.; Cabie, M.; Seyeux, A. Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion. Nat. Mater. 2015, 14, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Fenter, P.; Lee, S.S.; Park, C.; Catalano, J.G.; Zhang, Z.; Sturchio, N.C. Probing interfacial reactions with X-ray reflectivity and X-ray reflection interface microscopy: Influence of NaCl on the dissolution of orthoclase at pOH 2 and 85 °C. Geochim. Cosmochim. Ac 2010, 74, 3396–3411. [Google Scholar] [CrossRef]
- Ruiz-Agudo, E.; Putnis, C.V.; Rodriguez-Navarro, C.; Putnis, A. Mechanism of leached layer formation during chemical weathering of silicate minerals. Geology (Boulder) 2012, 40, 947–950. [Google Scholar] [CrossRef]
- Hellmann, R.; Wirth, R.; Daval, D.; Barnes, J.; Penisson, J.; Tisserand, D.; Epicier, T.; Florin, B.; Hervig, R.L. Unifying natural and laboratory chemical weathering with interfacial dissolution–reprecipitation: A study based on the nanometer-scale chemistry of fluid–silicate interfaces. Chem. Geol. 2012, 294–295, 203–216. [Google Scholar] [CrossRef]
- Valentine, B.J.; Hackley, P.C.; Hatcherian, J.J. Hydrous pyrolysis of New Albany Shale: A study examining maturation changes and porosity development. Mar. Petrol. Geol. 2021, 134, 105368. [Google Scholar] [CrossRef]
- Huang, H.; Chen, L.; Sun, W.; Xiong, F.; Ji, W.; Jia, J.; Tang, X.; Zhang, S.; Gao, J.; Luo, B. Pore-Throat Structure And Fractal Characteristics Of Shihezi Formation Tight Gas Sandstone In The Ordos Basin, China. Fractals 2018, 26, 1840005. [Google Scholar] [CrossRef]
- Dong, X.; Meng, X.; Pu, R. Impacts of mineralogy and pore throat structure on the movable fluid of tight sandstone gas reservoirs in coal measure strata: A case study of the Shanxi formation along the southeastern margin of the Ordos Basin. J. Petrol. Sci. Eng. 2023, 220, 111257. [Google Scholar] [CrossRef]
- Putnis, A. Mineral Replacement Reactions. Rev. Mineral. Geochem. 2009, 70, 87–124. [Google Scholar] [CrossRef]
- Mondal, S.; Upadhyay, D.; Banerjee, A. The origin of rapakivi feldspar by a fluid-induced coupled dissolution-reprecipitation process. J. Petrol. 2017, 58, 1393–1418. [Google Scholar] [CrossRef]
- Li Yongli, H.F.G.W. Experimental Study of Dissolution-Alteration of Amphibole in a Hydrothermal Environment. Acta Geol. Sin. 2019, 93, 1933–1946. [Google Scholar]
- Wang, M.; Zhang, Z.; Zhou, C.; Yuan, X.; Lin, M.; Liu, Y.; Cheng, D. Lithological characteristics and origin of alkaline lacustrine of the Lower Permian Fengcheng Formation in Mahu Sag, Junggar Basin. J. Palaeogeo. 2018, 20, 147–162, (Chinese in English abstract). [Google Scholar] [CrossRef]
- Savage, D.; Benbow, S.; Watson, C.; Takase, H.; Ono, K.; Oda, C.; Honda, A. Natural systems evidence for the alteration of clay under alkaline conditions: An example from Searles Lake, California. Appl. Clay Sci. 2010, 47, 72–81. [Google Scholar] [CrossRef]
- Hay, R.L.; Guldman, S.G.; Matthews, J.C.; Lander, R.H.; Duffin, M.E.; Kyser, T.K. Clay Mineral Diagenesis in Core KM-3 of Searles Lake, California. Clay Clay Miner. 1991, 39, 84–96. [Google Scholar] [CrossRef]
- Chalmers, G.R.L.; Bustin, R.M. Geological evaluation of Halfway–Doig–Montney hybrid gas shale–tight gas reservoir, northeastern British Columbia. Mar. Petrol. Geol. 2012, 38, 53–72. [Google Scholar] [CrossRef]
Sample Number | Mineral Composition (%) | Geochemical Characteristics | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Quartz | Potassium Feldspar | Plagioclase | Calcite | Hornblende | Eitelite | Clay Minerals | TOC (%) | S1 (mg/g) | S2 (mg/g) | S1 + S2 (mg/g) | S3 (mg/g) | |
M-200 | 9.8 | 4.5 | 67.1 | 11.7 | 3.5 | 1.2 | 2.1 | 0.468 | 0.29 | 0.66 | 0.95 | 1.7 |
M-250 | 12.5 | 5.8 | 72.9 | 1.4 | 3.9 | 1 | 2.4 | 0.254 | 0.15 | 0.39 | 0.54 | 0.4 |
M-300 | 10.7 | 6.9 | 74.1 | 0.5 | 3.8 | 0.6 | 2.9 | 0.244 | 0.05 | 0.36 | 0.41 | 0.51 |
M-350 | 6.4 | 3.6 | 36.7 | 1.5 | 10.1 | 40.1 | 1.7 | 0.232 | 0.08 | 0.17 | 0.25 | 0.48 |
M-400 | 7.0 | 5.5 | 59.3 | 1 | 8.2 | 17.2 | 1.8 | 0.305 | 0.1 | 0.16 | 0.26 | 0.64 |
M-450 | 8.5 | 6.8 | 67.2 | 8.5 | 5 | 2.1 | 1.9 | 0.176 | 0.03 | 0.05 | 0.08 | 0.64 |
Sample Number | SSA (m2/g) | Total Pore Volume (cm3/g) | Mesopore Volume (cm3/g) | Macropore Volume (cm3/g) |
---|---|---|---|---|
M-200 | 1.986 | 0.011625203 | 0.008207142 | 0.00341806 |
M-250 | 2.2188 | 0.012160499 | 0.008856538 | 0.003303961 |
M-300 | 1.7884 | 0.008924058 | 0.006689192 | 0.002234866 |
M-350 | 1.8952 | 0.010977099 | 0.00790145 | 0.003075649 |
M-400 | 1.1754 | 0.005916112 | 0.004359051 | 0.001557061 |
M-450 | 0.8345 | 0.00500682 | 0.003471779 | 0.001535041 |
Sample Number | D−10 | D10 | D0 | D1 | ΔD | Hurst (H) | D |
---|---|---|---|---|---|---|---|
M-200 | 1.7418 | 0.4719 | 1 | 0.857 | 1.2699 | 0.8615 | 2.4713 |
M-250 | 1.7466 | 0.476 | 1 | 0.859 | 1.2706 | 0.8635 | 2.4652 |
M-300 | 1.7838 | 0.4838 | 1 | 0.847 | 1.3 | 0.8636 | 2.46 |
M-350 | 1.7157 | 0.4682 | 1 | 0.842 | 1.2475 | 0.8598 | 2.4766 |
M-400 | 1.6726 | 0.4843 | 1 | 0.838 | 1.1883 | 0.8509 | 2.4995 |
M-450 | 1.7134 | 0.4488 | 1 | 0.829 | 1.2646 | 0.85 | 2.4898 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, H.; Zhang, Z.; Jing, L.; Liu, K. Quantifying the Pore Heterogeneity of Alkaline Lake Shale during Hydrous Pyrolysis by Using the Multifractal Method. Fractal Fract. 2024, 8, 335. https://doi.org/10.3390/fractalfract8060335
Liu Y, Zhang H, Zhang Z, Jing L, Liu K. Quantifying the Pore Heterogeneity of Alkaline Lake Shale during Hydrous Pyrolysis by Using the Multifractal Method. Fractal and Fractional. 2024; 8(6):335. https://doi.org/10.3390/fractalfract8060335
Chicago/Turabian StyleLiu, Yanxin, Hong Zhang, Zhengchen Zhang, Luda Jing, and Kouqi Liu. 2024. "Quantifying the Pore Heterogeneity of Alkaline Lake Shale during Hydrous Pyrolysis by Using the Multifractal Method" Fractal and Fractional 8, no. 6: 335. https://doi.org/10.3390/fractalfract8060335
APA StyleLiu, Y., Zhang, H., Zhang, Z., Jing, L., & Liu, K. (2024). Quantifying the Pore Heterogeneity of Alkaline Lake Shale during Hydrous Pyrolysis by Using the Multifractal Method. Fractal and Fractional, 8(6), 335. https://doi.org/10.3390/fractalfract8060335