Screen-Printed Metamaterial Absorber Using Fractal Metal Mesh for Optical Transparency and Flexibility
Abstract
:1. Introduction
2. Design and Analysis
2.1. Geometric Structure and Simulation Setup
2.2. Principle of Metamaterial Absorber
2.3. Simulation Result
3. Fabrication and Measurement
3.1. Fabrication
3.2. Measured Optical Transparency
3.3. Measured Absorptivity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rao, G.; Mahulikar, S. Integrated Review of Stealth Technology and Its Role in Airpower. Aeronaut. J. 2002, 106, 629–642. [Google Scholar] [CrossRef]
- Le Chevalier, F. Principles of Radar and Sonar Signal Processing, 1st ed.; Artech House: Norwood, MA, USA, 2001. [Google Scholar]
- Oh, S.Y.; Cha, K.H.; Hong, H.; Park, H.; Hong, S.K. Measurement of Nonlinear RCS of Electronic Targets for Nonlinear Detection. J. Electromagn. Eng. Sci. 2022, 22, 447–451. [Google Scholar] [CrossRef]
- Rogalski, A. History of Infrared Detectors. Opto-Electron. Rev. 2012, 20, 279–308. [Google Scholar] [CrossRef]
- Chen, X.; Huang, W.; Zhao, C.; Tian, Y. Rain Detection from X-Band Marine Radar Images: A Support Vector Machine-Based Approach. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2115–2123. [Google Scholar] [CrossRef]
- Patel, J.S.; Fioranelli, F.; Anderson, D. Review of Radar Classification and RCS Characterisation Techniques for Small UAVs or Drones. IET Radar Sonar Navig. 2018, 12, 911–919. [Google Scholar] [CrossRef]
- Vinoy, K.J.; Jha, R.M. Radar Absorbing Materials: From Theory to Design and Characterization, 1st ed.; Kluwer Academic Publishers: Boston, MA, USA, 1996. [Google Scholar]
- Seman, F.C.; Cahill, R. Performance Enhancement of Salisbury Screen Absorber Using Resistively Loaded Spiral FSS. Microw. Opt. Technol. Lett. 2011, 53, 1538–1541. [Google Scholar] [CrossRef]
- Reinert, J.; Psilopoulos, J.; Grubert, J.; Jacob, A.F. On the Potential of Graded-Chiral Dallenbach Absorbers. Microw. Opt. Technol. Lett. 2001, 30, 254–257. [Google Scholar] [CrossRef]
- Kim, G.; Kim, S.; Lee, B. Design of Wideband Microwave Absorbers Using Reactive Salisbury Screens with Maximum Flat Reflection. J. Electromagn. Eng. Sci. 2019, 19, 71–81. [Google Scholar] [CrossRef]
- Choi, W.-H.; Song, W.-H.; Lee, W.-J. Broadband Radar Absorbing Structures with a Practical Approach from Design to Fabrication. J. Electromagn. Eng. Sci. 2020, 20, 254–261. [Google Scholar] [CrossRef]
- Ning, J.; Chen, K.; Zhao, W.; Zhao, J.; Jiang, T.; Feng, Y. An Ultrathin Tunable Metamaterial Absorber for Lower Microwave Band Based on Magnetic Nanomaterial. Nanomaterials 2022, 12, 2135. [Google Scholar] [CrossRef]
- Suresh Kumar, N.; Naidu, K.C.B.; Banerjee, P.; Anil Babu, T.; Venkata Shiva Reddy, B. A Review on Metamaterials for Device Applications. Crystals 2021, 11, 518. [Google Scholar] [CrossRef]
- Sowjanya, A.; Vakula, D. Compact Dual Bandpass Filter Using Dual-Split Ring Resonator for 5G Upper Microwave Flexible Use Services. J. Electromagn. Eng. Sci. 2022, 22, 434–439. [Google Scholar] [CrossRef]
- Rhee, J.; Yoo, Y.; Kim, K.; Kim, Y.; Lee, Y. Metamaterial-Based Perfect Absorbers. J. Electromagn. Waves Appl. 2014, 28, 1541–1580. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Min, P.; Song, Z.; Yang, L.; Ralchenko, V.G.; Zhu, J. Optically Transparent Flexible Broadband Metamaterial Absorber Based on Topology Optimization Design. Micromachines 2021, 12, 1419. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.D.; Lee, Y.; Jung, C.W. Transparent and Flexible Patch Antenna Using MMF for Conformal WiFi-6E Applications. J. Electromagn. Eng. Sci. 2023, 23, 310–317. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, H.; Mou, N.; Li, H.; Yao, X.; Zhang, L. Tunable and Transparent Broadband Metamaterial Absorber with Water-Based Substrate for Optical Window Applications. Nanoscale 2021, 13, 7831–7837. [Google Scholar] [CrossRef]
- Park, S.; Shin, G.; Kim, H.; Kim, Y.; Yoon, I.-J. Polarization and Incidence Angle Independent Low-Profile Wideband Metamaterial Electromagnetic Absorber Using Indium Tin Oxide (ITO) film. Appl. Sci. 2021, 11, 9315. [Google Scholar] [CrossRef]
- Dong, Y.; Yu, D.; Li, G.; Cao, Y.; Ruan, Y.; Lin, M. Ultrathin and Optically Transparent Microwave Absorber Based on Flexible Silver Nanowire Film. Crystals 2021, 11, 1583. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Y.-T.; Feng, W.; Zhang, Y. Miniaturized metamaterial absorber with high transparency using narrow metallic strip. J. Appl. Phys. 2021, 130, 185107. [Google Scholar] [CrossRef]
- Soghi, S.; Heidar, H.; Haraty, M.R.; Nayyeri, V. Single-Layer Broadband Optically Transparent Metamaterial Absorber Using Gold Thin Film. IEEE Trans. Microw. Theory Tech. 2023, 1–10. [Google Scholar] [CrossRef]
- Lee, S.; Lee, M.; Lim, S. Frequency Reconfigurable Antenna Actuated by Three-Storey Tower Kirigami. Extrem. Mech. Lett. 2020, 39, 100833. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Xiao, M.; Awl, H.N.; Muhammadsharif, F.F.; Lang, T.; Saeed, S.R.; Alkurt, F.Ö.; Bakır, M.; Karaaslan, M.; Dong, J. Simulation and Lithographic Fabrication of a Triple Band Terahertz Metamaterial Absorber Coated on Flexible Polyethylene Terephthalate Substrate. Opt. Mater. Express 2022, 12, 338–359. [Google Scholar] [CrossRef]
- Oh, H.-S.; Jeong, S.; Yun, Y.; Jeong, S.Y. Development of Transmission Line Employing Graphene-Silver Nanowire/PET Structure for Application in Flexible and Wearable Devices in X-Band Wireless Communication Systems. J. Korean Inst. Electromagn. Sci. 2024, 24, 1–8. [Google Scholar] [CrossRef]
- Kim, H.K.; Ling, K.; Kim, K.; Lim, S. Flexible Inkjet-Printed Metamaterial Absorber for Coating a Cylindrical object. Opt. Express 2015, 23, 5898–5906. [Google Scholar] [CrossRef]
- Zhou, Q.; Yin, X.; Ye, F.; Mo, R.; Tang, Z.; Fan, X.; Cheng, L.; Zhang, L. Optically Transparent and Flexible Broadband Microwave Metamaterial Absorber with Sandwich Structure. Appl. Phys. A 2019, 125, 131. [Google Scholar] [CrossRef]
- Hyun, W.J.; Secor, E.B.; Hersam, M.C.; Frisbie, C.D.; Francis, L.F. High-Resolution Patterning of Graphene by Screen Printing with a Silicon Stencil for Highly Flexible Printed Electronics. Adv. Mater. 2015, 27, 109–115. [Google Scholar] [CrossRef]
- Park, S.; Park, E.; Lee, M.; Lim, S. Shape-Morphing Antenna Array by 4D-Printed Multimaterial Miura Origami. ACS Appl. Mater. Interfaces 2023, 15, 49843–49853. [Google Scholar] [CrossRef]
- Lee, D.; Kim, H.K.; Lim, S. Textile Metamaterial Absorber Using Screen Printed Chanel Logo. Microw. Opt. Technol. Lett. 2017, 59, 1424–1427. [Google Scholar] [CrossRef]
- Bark, S.; Kim, J.; Lee, M.; Lim, S. Optically Transparent Dual-Band Metamaterial Absorber Using Ag Nanowire Screen-Printed Second-Order Cross-Fractal Structures. Fractal Fract. 2024, 8, 153. [Google Scholar] [CrossRef]
- Alsulami, Q.A.; Wageh, S.; Al-Ghamdi, A.A.; Bilal, R.M.H.; Saeed, M.A. A Tunable and Wearable Dual-Band Metamaterial Absorber Based on Polyethylene Terephthalate (PET) Substrate for Sensing Applications. Polymers 2022, 14, 4503. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Ma, Y.; Wang, M. An Ultra-Wideband Miniaturized Ultrathin Flexible Metamaterial Absorber Using Lightweight ITO Film. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 2970–2974. [Google Scholar] [CrossRef]
- Sabban, A. Novel Meta-Fractal Wearable Sensors and Antennas for Medical, Communication, 5G, and IoT Applications. Fractal Fract. 2024, 8, 100. [Google Scholar] [CrossRef]
- Vallappil, A.K.; Khawaja, B.A.; Rahim, M.K.A.; Uzair, M.; Jamil, M.; Awais, Q. Minkowski–Sierpinski Fractal Structure-Inspired 2 × 2 Antenna Array for Use in Next-Generation Wireless Systems. Fractal Fract. 2023, 7, 158. [Google Scholar] [CrossRef]
- Benkhadda, O.; Saih, M.; Ahmad, S.; Al-Gburi, A.J.A.; Zakaria, Z.; Chaji, K.; Reha, A. A Miniaturized Tri-Wideband Sierpinski Hexagonal-Shaped Fractal Antenna for Wireless Communication Applications. Fractal Fract. 2023, 7, 115. [Google Scholar] [CrossRef]
- Bisht, N.; Malik, P.K.; Das, S.; Islam, T.; Asha, S.; Alathbah, M. Design of a Modified MIMO Antenna Based on Tweaked Spherical Fractal Geometry for 5G New Radio (NR) Band N258 (24.25–27.25 GHz) Applications. Fractal Fract. 2023, 7, 718. [Google Scholar] [CrossRef]
- Tumakov, D.; Chikrin, D.; Kokunin, P. Miniaturization of a Koch-Type Fractal Antenna for Wi-Fi Applications. Fractal Fract. 2020, 4, 25. [Google Scholar] [CrossRef]
- Jeong, H.; Tentzeris, M.M.; Lim, S. Optically Transparent Metamaterial Absorber Using Inkjet Printing Technology. Materials 2019, 12, 3406. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, K.; Singh, G.; Ramkumar, J.; Ramakrishna, S.A.; Srivastava, K.V.; Ramamurthy, P.C. Optically Transparent Protective Coating for ITO-Coated PET-Based Microwave Metamaterial Absorbers. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 378–388. [Google Scholar] [CrossRef]
- Kim, M.; Lee, D.; Oh, Y.; Lee, J.-Y.; Kim, B.; Park, J.; Park, D.; Hong, W. Antenna-on-Display Concept on an Extremely Thin Substrate for Sub-6 GHz Wireless Applications. IEEE Trans. Antennas Propag. 2022, 70, 5929–5934. [Google Scholar] [CrossRef]
- Manning, T. Microwave Radio Transmission Design Guide, 2nd ed.; Artech House: Norwood, MA, USA, 2009. [Google Scholar]
- Lee, S.; Lee, J. Azimuthal Six-Channel Retrodirective Metagrating. IEEE Trans. Antennas Propag. 2021, 69, 3588–3592. [Google Scholar] [CrossRef]
Ref. | Freq (GHz) | Fractional Bandwidth | Size * (λ0 × λ0) | Thickness (λ0) | Transparency | Flexibility | Substrate | Conductor | Fabrication Method |
---|---|---|---|---|---|---|---|---|---|
[19] | 5.8~16.2 | 94.55% | 0.24 × 0.24 | 0.100 | @ 400~800 nm | No | PET | ITO | Laser etching |
PMMA | |||||||||
Water | |||||||||
[23] | 8.5~23.0 | 92.06% | 0.18 × 0.18 | 0.085 | @ 400~700 nm | No | Polycarbonate | Gold | Deposition |
[34] | 1.98~25.88 | 171.57% | 0.06 × 0.06 | 0.035 | N/A | Yes | PET | ITO | Laser ablation |
Air | |||||||||
[25] | 430, 660, 810 | N/A | 0.11 × 0.11 | 0.014 | N/A | Yes | PET | Aluminum | Litho- graphic |
[28] | 8.0~18.0 | 76.92% | 0.27 × 0.27 | 0.123 | @ 400~800 nm | Yes | PET | ITO | Laser etching |
PVC | |||||||||
[17] | 5.3~15.0 | 95.56% | 0.66 × 0.66 | 0.202 | @ visible band | Yes | PET | ITO | Laser ablation |
PVC | Copper | Electro- plating | |||||||
This work | 9.02~9.56 | 5.81% | 0.27 × 0.27 | 0.043 | @ 450~700 nm | Yes | PET | Silver nanoparticle | Screen printing |
ITO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Lim, D.; Lim, S. Screen-Printed Metamaterial Absorber Using Fractal Metal Mesh for Optical Transparency and Flexibility. Fractal Fract. 2024, 8, 284. https://doi.org/10.3390/fractalfract8050284
Choi J, Lim D, Lim S. Screen-Printed Metamaterial Absorber Using Fractal Metal Mesh for Optical Transparency and Flexibility. Fractal and Fractional. 2024; 8(5):284. https://doi.org/10.3390/fractalfract8050284
Chicago/Turabian StyleChoi, Jinwoo, Daecheon Lim, and Sungjoon Lim. 2024. "Screen-Printed Metamaterial Absorber Using Fractal Metal Mesh for Optical Transparency and Flexibility" Fractal and Fractional 8, no. 5: 284. https://doi.org/10.3390/fractalfract8050284
APA StyleChoi, J., Lim, D., & Lim, S. (2024). Screen-Printed Metamaterial Absorber Using Fractal Metal Mesh for Optical Transparency and Flexibility. Fractal and Fractional, 8(5), 284. https://doi.org/10.3390/fractalfract8050284