Representations of Solutions of Time-Fractional Multi-Order Systems of Differential-Operator Equations
Abstract
:1. Introduction
2. Preliminaries
2.1. Fractional Derivatives
2.2. Matrix-Valued Functions
2.3. Classical ML Functions
- (a)
- (b)
- (i)
- (ii)
2.4. Matrix-Valued ML Functions
2.5. Vector-Indexed Matrix-Valued ML Functions
- Let and Then, we obtain the classical two-parameter ML function
- Indeed, in this case,
- 1.
- for the matrix-valued ML function , the following representation is valid
- 2.
- the following Laplace transform formula holds
2.6. Matrix-Valued Operators with Singular Symbols
3. Main Results
3.1. Fractional Multi-Order Systems of Differential-Operator Equations:
3.2. Fractional Multi-Order Systems of Differential-Operator Equations:
3.3. Fractional Multi-Order Systems of Differential-Operator Equations with Triangular Matrix-Valued Operators
3.4. Commensurate and Non-Commensurate Rational-Order Systems
4. The Riemann–Liouville Case
4.1. The Case and
4.2. The Case and Arbitrary
4.3. The Case and
5. Some Applications and Examples
6. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ML | Mittag-Leffler |
References
- Krein, S.G. Linear Differential Equations in Banach Space; AMS: Providence, RI, USA, 1971. [Google Scholar]
- Vasil’yev, V.V.; Piskarev, S.I. Differential equations in Banach spaces I. Theory of cosine operator functions II. J. Math. Sci. 2004, 122, 3055–3174. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: New York, NY, USA; London, UK, 1993. [Google Scholar]
- Bazhlekova, E. Fractional Evolution Equations in Banach Spaces. Ph.D. Dissertation, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2001. [Google Scholar]
- Kostin, V.A. The Cauchy problem for an abstract differential equation with fractional derivatives. Russ. Dokl. Math. 1993, 46, 316–319. [Google Scholar]
- Kochubei, A.N. A Cauchy problem for evolution equations of fractional order. Differ. Equ. 1989, 25, 967–974. [Google Scholar]
- Gorenflo, R.; Luchko, Y.F.; Zabreiko, R.R. On solvability of linear fractional differential equations in Banach spaces. Fract. Calc. Appl. Anal. 1999, 2, 163–176. [Google Scholar]
- Eidelman, S.D.; Kochubei, A.N. Cauchy problem for fractional diffusion equations. J. Differ. Equ. 2004, 199, 211–255. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastawa, H.M.; Trijillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Umarov, S. Introduction to Fractional and Pseudo-Differential Equations with Singular Symbols; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Veber, V.K. The structure of general solution of the system y(α)=Ay,0<α≤1. Trudy Kirgiz. Gos. Univ. Ser. Mat. Nauk 1976, 11, 26–32. (In Russian) [Google Scholar]
- Matychyn, I.; Onyshchenko, V. Matrix Mittag-Leffler function in fractional systems and its computation. Bull. Pol. Acad. Sci. Techn. Sci. 2018, 66, 495–500. [Google Scholar]
- Garrappa, R.; Popolizio, M. Computing the matrix Mittag-Leffler function with applications to fractional Calculus. J. Sci. Comput. 2018, 77, 129–153. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Babakhani, A. Analysis of a system of fractional differential equations. J. Math. Anal. Appl. 2004, 293, 511–522. [Google Scholar] [CrossRef]
- Umarov, S.; Ashurov, R.; Chen, Y. On a method of solution of systems of fractional pseudo-differential equations. Fract. Calc. Appl. Anal. 2021, 24, 254–277. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Li, C.; Guo, Q. Analysis of fractional differential equations with multi-orders. Fractals 2007, 15, 173–182. [Google Scholar] [CrossRef]
- Odibat, Z. Analytic study on linear systems of fractional differential equations. Comp. Math. Appl. 2010, 59, 1170–1183. [Google Scholar] [CrossRef]
- Umarov, S. Representations of solutions of systems of time-fractional pseudo-differential equations. Frac. Calc. Appl. Anal. 2024, 2024, 616–651. [Google Scholar] [CrossRef]
- Chikriy, A.A.; Matichin, I.I. Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann-Liouville, Caputo and Miller-Ross. J. Autom. Inf. Sci. 2008, 40, 1–11. [Google Scholar]
- Das, S.; Gupta, P.K. A mathematical model on fractional Lotka-Volterra equations. J. Theor. Biol. 2011, 277, 1–6. [Google Scholar] [CrossRef]
- Rihan, F. Numerical modeling of fractional-order biological systems. Abstract Appl. Anal. 2013, 2013, 816803. [Google Scholar] [CrossRef]
- Guo, C.; Fang, S. Stability and approximate analytic solutions of the fractional Lotka-Volterra equations for three competitors. Adv. Differ. Equat. 2016, 2016, 219. [Google Scholar] [CrossRef]
- Khan, N.A.; Razzaq, O.A.; Mondal, S.P.; Rubbab, Q. Fractional order ecological system for complexities of interacting species with harvesting threshold in imprecise environment. Adv. Differ. Equat. 2019, 2019, 405. [Google Scholar] [CrossRef]
- Rana, S.; Bhattacharya, S.; Pal, J.; Guerekata, G.; Chattopadhyay, J. Paradox of enrichment: A fractional differential approach with memory. Phys. A Stat. Mech. Appl. 2013, 392, 3610–3621. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A.; Zaman, G.; Chohan, M.I.; Momani, S.; Erturk, V.S. Analytic numeric solution for SIRC epidemic model in fractional order. Asian J. Math. Appl. 2013, 2013, ama0058. [Google Scholar]
- Islam, R.; Pease, A.; Medina, D.; Oraby, T. Integer versus fractional order SEIR deterministic and stochastic models of measles. Int. J. Environ. Res. Public Health 2020, 17, 2014. [Google Scholar] [CrossRef] [PubMed]
- Pierantozzi, T. Fractional evolution Dirac-like equations: Some properties and a discrete Von Neumann-type analysis. J. Comp. Appl. Anal. 2009, 224, 284–295. [Google Scholar] [CrossRef]
- Ercan, A. On the fractional Dirac systems with non-singular operators. Therm. Sci. 2019, 23, 2159–2168. [Google Scholar] [CrossRef]
- Bernstein, S. Fractional Dirac operator. Noncommutative Analysis. Oper. Theor. Appl. 2016, 252, 27–41. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions. In Related Topics and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-Leffler functions and their applications. J. Appl. Math. 2011, 2011, 298628. [Google Scholar] [CrossRef]
- Dunford, N.; Schwartz, J. Linear Operators; Interscience Publishers: Geneva, Switzerland, 1964. [Google Scholar]
- Robertson, A.P.; Robertson, W.J. Topological Vector Spaces; Cambridge University Press: London, UK, 1964. [Google Scholar]
- Radyno, Y.V. Linear Equations and Bornology; BSU: Minsk, Belarus, 1982. (In Russian) [Google Scholar]
- Umarov, S. Nonlocal boundary value problems for pseudo-differential and differential operator equations II. Differ. Equat. 1998, 34, 374–381. [Google Scholar]
- Kaneko, A. On the structure of hyperfunctions with compact supports. Proc. Jpn. Acad. 1971, 47, 956–958. [Google Scholar] [CrossRef] [PubMed]
- Umarov, S. Fractional Duhamel principle. In Handbook of Fractional Calculus; De-Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Almeida, R.; Bastos, N.R.O.; Monteiro, M.T.T. Modeling some real phenomena by fractional differential equations. Math. Meth. Appl. Sci. 2016, 39, 4846–4855. [Google Scholar] [CrossRef]
- Collas, P.; Klein, D. The Dirac Equation in Curved Spacetime: A Guide for Calculations; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Vazquez, L.; Mendes, R.V. Fractionally coupled solutions of the diffusion equation. Appl. Math. Comp. 2003, 141, 125–130. [Google Scholar] [CrossRef]
- Blackledge, J.; Babajanov, B. The fractional Schrödinger-Klein-Gordon equation and intermediate relativism. Math. Aeterna 2013, 3, 601–615. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umarov, S. Representations of Solutions of Time-Fractional Multi-Order Systems of Differential-Operator Equations. Fractal Fract. 2024, 8, 254. https://doi.org/10.3390/fractalfract8050254
Umarov S. Representations of Solutions of Time-Fractional Multi-Order Systems of Differential-Operator Equations. Fractal and Fractional. 2024; 8(5):254. https://doi.org/10.3390/fractalfract8050254
Chicago/Turabian StyleUmarov, Sabir. 2024. "Representations of Solutions of Time-Fractional Multi-Order Systems of Differential-Operator Equations" Fractal and Fractional 8, no. 5: 254. https://doi.org/10.3390/fractalfract8050254
APA StyleUmarov, S. (2024). Representations of Solutions of Time-Fractional Multi-Order Systems of Differential-Operator Equations. Fractal and Fractional, 8(5), 254. https://doi.org/10.3390/fractalfract8050254