Dengue Transmission Dynamics: A Fractional-Order Approach with Compartmental Modeling
Abstract
:1. Introduction
2. Mathematical Modeling
2.1. Preliminaries on Fractional Derivatives
2.2. Mathematical Model of Dengue
2.2.1. Classical Integer Model
- Human populations
- Vector populations
2.2.2. Caputo–Fabrizio Fractional Derivative
- Human populations
- Vector populations
3. Numerical Simulations and Analysis of the Model
3.1. Existence and Uniqueness
3.2. Stability Analysis
3.2.1. Disease-Free Equilibrium Point
3.2.2. Reproductive Number
3.3. Discrete Scheme for Caputo–Fabrizio Fractional Derivative
4. Result and Discussion
5. Conclusions
- Parameter Sensitivity Analysis: A thorough sensitivity analysis could be conducted to identify critical model parameters and their effects on disease dynamics. This will provide valuable insights into the robustness and stability of the model under different conditions.
- Optimization of Control Measures: To better understand the influence of control techniques on disease transmission and to inform resource allocation for disease management, the model could be used to optimize vaccination campaigns, vector control, and therapeutic interventions.
- Spatial Considerations: Given that dengue prevalence varies greatly across locations, the model could be extended to consider spatial differences in disease transmission. The integration of spatial dynamics will facilitate the customization of control strategies to particular regions.
- Climate and Environmental Factors: The effect of the environment and climate on the spread of dengue could be examined, as these conditions are essential to the growth of mosquito vectors.
- Multi-Pathogen Modeling: In order to investigate possible interactions and co-infections and provide a more complete picture of the disease landscape, other vector-borne illnesses could be included in the model.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef]
- Stanaway, J.D.; Shepard, D.S.; Undurraga, E.A.; Halasa, Y.A.; Coffeng, L.E.; Brady, O.J.; Hay, S.I.; Bedi, N.; Bensenor, I.M.; Castañeda-Orjuela, C.A.; et al. The global burden of dengue: An analysis from the Global Burden of Disease Study 2013. Lancet Infect. Dis. 2016, 16, 712–723. [Google Scholar] [CrossRef]
- Chan, M.; Johansson, M.A. The incubation periods of dengue viruses. PLoS ONE 2012, 7, e50972. [Google Scholar] [CrossRef]
- Carmo, A.M.d.S.; Suzuki, R.B.; Riquena, M.M.; Eterovic, A.; Sperança, M.A. Maintenance of demographic and hematological profiles in a long-lasting dengue fever outbreak: Implications for management. Infect. Dis. Poverty 2016, 5, 7–17. [Google Scholar]
- Edussuriya, C.; Deegalla, S.; Gawarammana, I. An accurate mathematical model predicting number of dengue cases in tropics. PLoS Neglected Trop. Dis. 2021, 15, e0009756. [Google Scholar] [CrossRef]
- Jain, R.; Sontisirikit, S.; Iamsirithaworn, S.; Prendinger, H. Prediction of dengue outbreaks based on disease surveillance, meteorological and socio-economic data. BMC Infect. Dis. 2019, 19, 272. [Google Scholar] [CrossRef]
- Yixin, H.Y.; Carrasco, A.M.; Dong, Y.; Sgrò, C.M.; McGraw, E.A. The effect of temperature on Wolbachia-mediated dengue virus blocking in Aedes aegypti. Am. J. Trop. Med. Hyg. 2016, 94, 812. [Google Scholar]
- Ross, P.A.; Axford, J.K.; Yang, Q.; Staunton, K.M.; Ritchie, S.A.; Richardson, K.M.; Hoffmann, A.A. Heatwaves cause fluctuations in w Mel Wolbachia densities and frequencies in Aedes aegypti. PLoS Neglected Trop. Dis. 2020, 14, e0007958. [Google Scholar] [CrossRef]
- Brauer, F.; Castillo-Chavez, C.; Feng, Z. Mathematical Models in Epidemiology; Springer: Berlin/Heidelberg, Germany, 2019; Volume 32. [Google Scholar]
- Ghori, M.B.; Naik, P.A.; Zu, J.; Eskandari, Z.; Naik, M.U.D. Global dynamics and bifurcation analysis of a fractional-order SEIR epidemic model with saturation incidence rate. Math. Methods Appl. Sci. 2022, 45, 3665–3688. [Google Scholar] [CrossRef]
- Fischer, D.B.; Halstead, S. Observations related to pathogenesis of dengue hemorrhagic fever. V. Examination of agspecific sequential infection rates using a mathematical model. Yale J. Biol. Med. 1970, 42, 329. [Google Scholar]
- Aguiar, M.; Anam, V.; Blyuss, K.B.; Estadilla, C.D.S.; Guerrero, B.V.; Knopoff, D.; Kooi, B.W.; Srivastav, A.K.; Steindorf, V.; Stollenwerk, N. Mathematical models for dengue fever epidemiology: A 10-year systematic review. Phys. Life Rev. 2022, 40, 65–92. [Google Scholar] [CrossRef] [PubMed]
- Dafalla, O.; Abdulhaq, A.A.; Almutairi, H.; Noureldin, E.; Ghzwani, J.; Mashi, O.; Shrwani, K.J.; Hobani, Y.; Sufyani, O.; Ayed, R.; et al. The emergence of an imported variant of dengue virus serotype 2 in the Jazan region, southwestern Saudi Arabia. Trop. Dis. Travel Med. Vaccines 2023, 9, 5. [Google Scholar] [CrossRef]
- Zarin, R. Modeling and numerical analysis of fractional order hepatitis B virus model with harmonic mean type incidence rate. Comput. Methods Biomech. Biomed. Eng. 2022, 26, 1018–1033. [Google Scholar] [CrossRef]
- Baleanu, D.; Ghanbari, B.; Asad, J.H.; Jajarmi, A.; Pirouz, H.M. Planar system-masses in an equilateral triangle: Numerical study within fractional calculus. Comput. Model. Eng. Sci. 2020, 124, 953–968. [Google Scholar] [CrossRef]
- Khan, A.; Zarin, R.; Hussain, G.; Ahmad, N.A.; Mohd, M.H.; Yusuf, A. Stability analysis and optimal control of covid-19 with convex incidence rate in Khyber Pakhtunkhawa (Pakistan). Results Phys. 2021, 20, 103703. [Google Scholar] [CrossRef] [PubMed]
- Zarin, R.; Khaliq, H.; Khan, A.; Khan, D.; Akgül, A.; Humphries, U.W. Deterministic and fractional modeling of a computer virus propagation. Results Phys. 2022, 33, 105130. [Google Scholar] [CrossRef]
- Jajarmi, A.; Baleanu, D. A new iterative method for the numerical solution of high-order non-linear fractional boundary value problems. Front. Phys. 2020, 8, 220. [Google Scholar] [CrossRef]
- Djeddi, K.; Bouali, T.; Msmali, A.H.; Ahmadini, A.A.H.; Koam, A.N. Study Models of COVID-19 in Discrete-Time and Fractional-Order. Fractal Fract. 2023, 7, 446. [Google Scholar] [CrossRef]
- Baleanu, D.; Ghassabzade, F.A.; Nieto, J.J.; Jajarmi, A. On a new and generalized fractional model for a real cholera outbreak. Alex. Eng. J. 2022, 61, 9175–9186. [Google Scholar] [CrossRef]
- Jajarmi, A.; Baleanu, D.; Vahid, K.Z.; Pirouz, H.M.; Asad, J. A new and general fractional Lagrangian approach: A capacitor microphone case study. Results Phys. 2021, 31, 104950. [Google Scholar] [CrossRef]
- Zarin, R.; Khan, A.; Akgül, A.; Akgül, E.K. Fractional modeling of COVID-19 pandemic model with real data from Pakistan under the ABC operator. AIMS Math. 2022, 7, 15939–15964. [Google Scholar] [CrossRef]
- Sajjadi, S.S.; Baleanu, D.; Jajarmi, A.; Pirouz, H.M. A new adaptive synchronization and hyperchaos control of a biological snap oscillator. Chaos Solitons Fractals 2020, 138, 109919. [Google Scholar] [CrossRef]
- Zarin, R.; Khan, A.; Inc, M.; Humphries, U.W.; Karite, T. Dynamics of five grade leishmania epidemic model using fractional operator with Mittag–Leffler kernel. Chaos Solitons Fractals 2021, 147, 110985. [Google Scholar] [CrossRef]
- Haq, F.; Shah, K.; Rahman, G.U.; Shahzad, M. Numerical analysis of fractional order model of HIV-1 infection of CD4+ T-cells. Comput. Methods Differ. Equations 2017, 5, 1–11. [Google Scholar]
- Haq, F.; Shah, K.; ur Rahman, G.; Shahzad, M. Numerical solution of fractional order smoking model via Laplace Adomian decomposition method. Alex. Eng. J. 2018, 57, 1061–1069. [Google Scholar] [CrossRef]
- ur Rahman, G.; Agarwal, R.P.; Liu, L.; Khan, A. Threshold dynamics and optimal control of an age-structured giving up smoking model. Nonlinear Anal. Real World Appl. 2018, 43, 96–120. [Google Scholar] [CrossRef]
- Al-Sulami, H.; El-Shahed, M.; Nieto, J.J.; Shammakh, W. On fractional order dengue epidemic model. Math. Probl. Eng. 2014, 2014, 456537. [Google Scholar] [CrossRef]
- Atangana, A. Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals 2017, 102, 396–406. [Google Scholar] [CrossRef]
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific: Singapore, 2011. [Google Scholar]
- Qureshi, S.; Yusuf, A.; Aziz, S. On the use of Mohand integral transform for solving fractional-order classical Caputo differential equations. J. Appl. Math. Comput. Mech. 2020, 19, 99–109. [Google Scholar] [CrossRef]
- Jain, S. Numerical analysis for the fractional diffusion and fractional Buckmaster equation by the two-step Laplace Adam-Bashforth method. Eur. Phys. J. Plus 2018, 133, 19. [Google Scholar] [CrossRef]
- Martcheva, M. An Introduction to Mathematical Epidemiology; Springer: Berlin/Heidelberg, Germany, 2015; Volume 61. [Google Scholar]
- Slotine, J.J.E.; Li, W. Applied Nonlinear Control; Prentice hall Englewood: Cliffs, NJ, USA, 1991; Volume 199. [Google Scholar]
- ul Rehman, A.; Singh, R.; Agarwal, P. Modeling, analysis and prediction of new variants of covid-19 and dengue co-infection on complex network. Chaos Solitons Fractals 2021, 150, 111008. [Google Scholar] [CrossRef] [PubMed]
- Melebari, S.; Bakri, R.; Hafiz, A.; Qabbani, F.; Khogeer, A.; Alharthi, I.; Alhazmi, S.; Almalki, Y.; Bulkhi, R.; Gammash, R.; et al. The epidemiology and incidence of dengue in Makkah, Saudi Arabia, during 2017–2019. Saudi Med. J. 2021, 42, 1173. [Google Scholar] [CrossRef] [PubMed]
Symbol | Definition | Values |
---|---|---|
Rate of human recruitment (per day) | 0.02–0.05 | |
Parameter (per day) | 0.7–0.9 | |
Death rate of humans | 0.11–0.26 | |
Incubation rate of humans | 0.2–0.9 | |
Incubation rate of mosquitoes (per day) | 0.01–0.06 | |
Humans who are hospitalized | 0.002–0.006 | |
Disease-related human rate (per day) | 0.06–0.09 | |
Recovery rate of infected (per day) | 0–0.1 | |
Recovery rate of infected and hospitalized (per day) | 0–0.06 | |
Recovery rate of hospitalized (per day) | 0–0.008 | |
Recruitment rate of mosquitoes (per day) | 0.2–0.4 | |
Death rate of mosquitoes (per day) | 0–0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meetei, M.Z.; Zafar, S.; Zaagan, A.A.; Mahnashi, A.M.; Idrees, M. Dengue Transmission Dynamics: A Fractional-Order Approach with Compartmental Modeling. Fractal Fract. 2024, 8, 207. https://doi.org/10.3390/fractalfract8040207
Meetei MZ, Zafar S, Zaagan AA, Mahnashi AM, Idrees M. Dengue Transmission Dynamics: A Fractional-Order Approach with Compartmental Modeling. Fractal and Fractional. 2024; 8(4):207. https://doi.org/10.3390/fractalfract8040207
Chicago/Turabian StyleMeetei, Mutum Zico, Shahbaz Zafar, Abdullah A. Zaagan, Ali M. Mahnashi, and Muhammad Idrees. 2024. "Dengue Transmission Dynamics: A Fractional-Order Approach with Compartmental Modeling" Fractal and Fractional 8, no. 4: 207. https://doi.org/10.3390/fractalfract8040207
APA StyleMeetei, M. Z., Zafar, S., Zaagan, A. A., Mahnashi, A. M., & Idrees, M. (2024). Dengue Transmission Dynamics: A Fractional-Order Approach with Compartmental Modeling. Fractal and Fractional, 8(4), 207. https://doi.org/10.3390/fractalfract8040207