Theoretical Investigation on the Conservation Principles of an Extended Davey–Stewartson System with Riesz Space Fractional Derivatives of Different Orders
Abstract
:1. Introduction
2. Mathematical Model
- (a)
- , for each .
- (b)
- , for each .
- (c)
- , for each .
- (a)
- .
- (b)
- .
- (c)
- .
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Systems with Long-Range Interactions
- If , then .
- .
References
- Zakharov, V.; Schulman, E. Degenerated dispersion laws, motion invariant and kinetic equations. Phys. D 1980, 1, 192–202. [Google Scholar] [CrossRef]
- Davey, A.; Stewartson, K. On three dimensional packets of surface waves. Proc. R. Soc. A 1974, 338, 101–110. [Google Scholar]
- Schrödinger, E. An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev. 1926, 28, 1049–1070. [Google Scholar] [CrossRef]
- Fokas, A.S.; Ablowitz, M.J. Method of Solution for a Class of Multidimensional Nonlinear Evolution Equations. Phys. Rev. Lett. 1983, 51, 7–10. [Google Scholar] [CrossRef]
- Fokas, A.S.; Ablowitz, M.J. On the inverse scattering transform of multidimensional nonlinear equations related to first-order systems in the plane. J. Math. Phys. 1984, 25, 2494–2505. [Google Scholar] [CrossRef]
- Besse, C.; Mauser, N.J.; Stimming, H.P. Numerical study of the Davey-Stewartson system. ESAIM Math. Model. Numer. Anal. 2004, 38, 1035–1054. [Google Scholar] [CrossRef]
- Babaoglu, C. Long-wave short-wave resonance case for a generalized Davey–Stewartson system. Chaos Solitons Fractals 2008, 38, 48–54. [Google Scholar] [CrossRef]
- Ismael, H.F.; Atas, S.S.; Bulut, H.; Osman, M.S. Analytical solutions to the M-derivative resonant Davey–Stewartson equations. Mod. Phys. Lett. 2021, 35, 2150455. [Google Scholar] [CrossRef]
- Gurefe, Y.; Misirli, E.; Pandir, Y.; Sonmezoglu, A.; Ekici, M. New Exact Solutions of the Davey–Stewartson Equation with Power-Law Nonlinearity. Bull. Malays. Math. Sci. Soc. 2014, 38, 1223–1234. [Google Scholar] [CrossRef]
- Gurefe, Y.; Misirli, E.; Pandir, Y.; Sonmezoglu, A.; Ekici, M. Exact Blow-Up Solutions to the Cauchy Problem for the Davey-Stewartson Systems. Proc. R. Soc. Math. Phys. Eng. Sci. 1992, 436, 345–349. [Google Scholar]
- Babaoglu, C. Some special solutions of a generalized Davey–Stewartson system. Chaos, Solitons & Fractals. Proc. R. Soc. Math. Phys. Eng. Sci. 2006, 30, 781–790. [Google Scholar]
- Tajiri, M.; Arai, T. Growing-and-decaying mode solution to the Davey-Stewartson equation. Phys. Rev. E 1999, 60, 2297–2305. [Google Scholar] [CrossRef] [PubMed]
- Jafari, H.; Sooraki, A.; Talebi, Y.; Biswas, A. The first integral method and traveling wave solutions to Davey–Stewartson equation. Nonlinear Anal. Model. Control 2012, 17, 182–193. [Google Scholar] [CrossRef]
- Zedan, H.A.; Monaquel, S.J. The sine-cosine method for the Davey-Stewartson equations. Appl. Math. E-Notes 2010, 10, 103–111. [Google Scholar]
- Arkadiev, V.A.; Pogrebkov, A.K.; Polivanov, M.C. Inverse scattering transform method and soliton solutions for Davey-Stewartson II equation. Phys. D Nonlinear Phenom. 1989, 36, 189–197. [Google Scholar] [CrossRef]
- Besse, C.; Bruneau, C.H. Numerical study of elliptic-hyperbolic Davey–Stewartson system: Dromions simulation and blow-up. Math. Model. Methods Appl. Sci. 1998, 8, 1363–1386. [Google Scholar] [CrossRef]
- Gao, Y.; Mei, L.; Li, R. A time-splitting Galerkin finite element method for the Davey–Stewartson equations. Comput. Phys. Commun. 2015, 197, 1035–1054. [Google Scholar] [CrossRef]
- Gao, Y.; Mei, L.; Li, R. Galerkin methods for the Davey–Stewartson equations. Appl. Math. Comput. 2018, 328, 144–161. [Google Scholar] [CrossRef]
- Klein, C.; Muite, B.; Roidot, K. Numerical study of blowup in the Davey-Stewartson system. arXiv 2011, arXiv:1112.4043. [Google Scholar]
- Tsuchida, T.; Dimakis, A. On a (2 + 1)-dimensional generalization of the Ablowitz–Ladik lattice and a discrete Davey–Stewartson system. J. Phys. A Math. Theor. 2011, 44, 325206. [Google Scholar] [CrossRef]
- Tsuchida, T. Integrable semi-discretizations of the Davey-Stewartson system and a (2 + 1)-dimensional Yajima-Oikawa system. arXiv 2020, arXiv:2007.10382. [Google Scholar]
- Klein, C.; Stoilov, N. Numerical Study of Blow-Up Mechanisms for Davey–Stewartson II Systems. Stud. Appl. Math. 2018, 141, 89–112. [Google Scholar] [CrossRef]
- Babaoglu, C.; Erbay, S. Two-dimensional wave packets in an elastic solid with couple stresses. Int. J.-Non-Linear Mech. 2004, 39, 941–949. [Google Scholar] [CrossRef]
- Tarasov, V.E. Continuous limit of discrete systems with long-range interaction. J. Phys. A Math. Gen. 2006, 39, 14895. [Google Scholar] [CrossRef]
- Tarasov, V.E. Partial fractional derivatives of Riesz type and nonlinear fractional differential equations. Nonlinear Dyn. 2016, 86, 1745–1759. [Google Scholar] [CrossRef]
- Jin, B.; Zhang, X. Fractional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Ortigueira, M.D. Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, 2006, 048391. [Google Scholar] [CrossRef]
- Ortigueira, M.D. Two-sided and regularised Riesz-Feller derivatives. Math. Methods Appl. Sci. 2021, 44, 8057–8069. [Google Scholar] [CrossRef]
- Cai, M.; Li, C. On Riesz derivative. Fract. Calc. Appl. Anal. 2019, 22, 287–301. [Google Scholar] [CrossRef]
- Al-Saqabi, B.; Boyadjiev, L.; Luchko, Y. Comments on employing the Riesz-Feller derivative in the Schrödinger equation. Eur. Phys. J. Spec. Top. 2013, 222, 1779–1794. [Google Scholar] [CrossRef]
- Shakeri, F.; Dehghan, M. Numerical solution of the Klein–Gordon equation via He’s variational iteration method. Nonlinear Dyn. 2008, 51, 89–97. [Google Scholar] [CrossRef]
- Ding, P.; Yan, Y.; Liang, Z.; Yan, Y. Finite difference method for time-fractional Klein–Gordon equation on an unbounded domain using artificial boundary conditions. Math. Comput. Simul. 2023, 205, 902–925. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Al-Askar, F.M.; El-Morshedy, M. Impacts of Brownian motion and fractional derivative on the solutions of the stochastic fractional Davey-Stewartson equations. Demonstr. Math. 2023, 56, 20220233. [Google Scholar] [CrossRef]
- Jafari, H.; Tajadodi, H.; Bolandtalat, A.; Johnston, S. A decomposition method for solving the fractional Davey-Stewartson equations. Int. J. Appl. Comput. Math. 2015, 1, 559–568. [Google Scholar] [CrossRef]
- Rao, J.; Porsezian, K.; He, J. Semi-rational solutions of the third-type Davey-Stewartson equation. Chaos Interdiscip. J. Nonlinear Sci. 2017, 27, 083115. [Google Scholar] [CrossRef] [PubMed]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Macías-Díaz, J.E. On the solution of a Riesz space-fractional nonlinear wave equation through an efficient and energy-invariant scheme. Int. J. Comput. Math. 2019, 96, 337–361. [Google Scholar] [CrossRef]
- Macías-Díaz, J.E.; Medina-Ramírez, I.E.; Puri, A. Numerical treatment of the spherically symmetric solutions of a generalized Fisher–Kolmogorov–Petrovsky–Piscounov equation. J. Comput. Appl. Math. 2009, 231, 851–868. [Google Scholar] [CrossRef]
- Macías-Díaz, J.E.; Szafrańska, A. Existence and uniqueness of monotone and bounded solutions for a finite-difference discretization à la Mickens of the generalized Burgers–Huxley equation. J. Differ. Equ. Appl. 2014, 20, 989–1004. [Google Scholar] [CrossRef]
- Almusawa, H.; Ali, K.K.; Wazwaz, A.M.; Mehanna, M.; Baleanu, D.; Osman, M. Protracted study on a real physical phenomenon generated by media inhomogeneities. Results Phys. 2021, 31, 104933. [Google Scholar] [CrossRef]
- Abdelwahab, A.; Mekheimer, K.S.; Ali, K.K.; El-Kholy, A.; Sweed, N. Numerical simulation of electroosmotic force on micropolar pulsatile bloodstream through aneurysm and stenosis of carotid. Waves Random Complex Media 2021, 1–32. [Google Scholar] [CrossRef]
- Osman, M.S.; Ali, K.K. Optical soliton solutions of perturbing time-fractional nonlinear Schrödinger equations. Optik 2020, 209, 164589. [Google Scholar] [CrossRef]
- Al-Amr, M.O.; Rezazadeh, H.; Ali, K.K.; Korkmazki, A. N1-soliton solution for Schrödinger equation with competing weakly nonlocal and parabolic law nonlinearities. Commun. Theor. Phys. 2020, 72, 065503. [Google Scholar] [CrossRef]
- Macías-Díaz, J.E. A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives. J. Comput. Phys. 2017, 351, 40–58. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina-Holguín, C.A.; Urenda-Cázares, E.; Macías-Díaz, J.E.; Gallegos, A. Theoretical Investigation on the Conservation Principles of an Extended Davey–Stewartson System with Riesz Space Fractional Derivatives of Different Orders. Fractal Fract. 2024, 8, 206. https://doi.org/10.3390/fractalfract8040206
Molina-Holguín CA, Urenda-Cázares E, Macías-Díaz JE, Gallegos A. Theoretical Investigation on the Conservation Principles of an Extended Davey–Stewartson System with Riesz Space Fractional Derivatives of Different Orders. Fractal and Fractional. 2024; 8(4):206. https://doi.org/10.3390/fractalfract8040206
Chicago/Turabian StyleMolina-Holguín, Carlos Alberto, Ernesto Urenda-Cázares, Jorge E. Macías-Díaz, and Armando Gallegos. 2024. "Theoretical Investigation on the Conservation Principles of an Extended Davey–Stewartson System with Riesz Space Fractional Derivatives of Different Orders" Fractal and Fractional 8, no. 4: 206. https://doi.org/10.3390/fractalfract8040206
APA StyleMolina-Holguín, C. A., Urenda-Cázares, E., Macías-Díaz, J. E., & Gallegos, A. (2024). Theoretical Investigation on the Conservation Principles of an Extended Davey–Stewartson System with Riesz Space Fractional Derivatives of Different Orders. Fractal and Fractional, 8(4), 206. https://doi.org/10.3390/fractalfract8040206