New Inequalities Using Multiple Erdélyi–Kober Fractional Integral Operators
Abstract
:1. Introduction and Motivation
2. Multiple Erdélyi–Kober Fractional Integral Operators
- The Meijer G-function of the form can be used to describe the multiple E-K fractional integrals more simply (see [12], Chapter 1).
- For , it reduces to the E-K fractional operator.
3. Reverse Minkowski Inequalities Using Multiple Erdélyi–Kober Fractional Operator
4. New Inequalities Using Multiple Erdélyi–Kober Fractional Integral Operator
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
M-E-K | Multiple Erdélyi–Kober |
M-S-M | Marichev–Saigo–Maeda |
E-K | Erdélyi–Kober |
R-L | Riemann–Liouville |
References
- Tassaddiq, A. General escape criteria for the generation of fractals in extended Jungck–Noor orbit. Math. Comput. Simul. 2022, 196, 1–14. [Google Scholar] [CrossRef]
- Dahmani, Z.; Tabharit, L. On weighted Gruss type inequalities via fractional integration. J. Adv. Res. Pure Math. 2010, 2, 31–38. [Google Scholar] [CrossRef]
- Dahmani, Z. New inequalities in fractional integrals. Int. J. Nonlinear Sci. 2010, 9, 493–497. [Google Scholar]
- Dahmani, Z. On Minkowski and Hermite–Hadamard integral inequalities via fractional integral. Ann. Funct. Anal. 2010, 1, 51–58. [Google Scholar] [CrossRef]
- Chinchane, V.L. New approach to Minkowski fractional inequalities using generalized K-fractional integral operator. J. Indian Math. Soc. 2018, 85, 32–41. [Google Scholar] [CrossRef]
- Chinchane, V.L.; Pachpatte, D.B. New fractional inequalities involving Saigo fractional integral operator. Math. Sci. Lett. 2014, 3, 133–139. [Google Scholar] [CrossRef]
- Houas, M. Some integral inequalities involving Saigo fractional integral operators. J. Interdiscip. Math. 2018, 21, 681–694. [Google Scholar] [CrossRef]
- Purohit, S.D.; Raina, R.K. Chebyshev type inequalities for the Saigo fractional integral and their q-analogues. J. Math. Inequal. 2013, 7, 239–249. [Google Scholar] [CrossRef]
- Yang, H.; Qaisar, S.; Munir, A.; Naeem, M. New inequalities via Caputo-Fabrizio integral operator with application. Aims Math. 2023, 8, 19391–19412. [Google Scholar] [CrossRef]
- Singhal, M.; Mitta, E. On new fractional integral inequalities using Marichev–Saigo–Maeda operator. Math. Methods Appl. Sci. 2023, 46, 2055–2071. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Khan, A.; Rahman, G.; Nisar, K.S.; Abouzaid, M.S.; Khan, I. Fractional integral inequalities involving Marichev–Saigo–Maeda fractional integral operator. J. Inequal. Appl. 2020, 2020, 185. [Google Scholar] [CrossRef]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Wiley: Harlow, UK; New York, NY, USA, 1994. [Google Scholar]
- Kiryakova, V. Unified Approach to Fractional Calculus Images of Special Functions—A Survey. Mathematics 2020, 8, 2260. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saxena, R.K. Operators of fractional integration and their applications. Appl. Math. Comput. 2001, 118, 1–52. [Google Scholar] [CrossRef]
- Srivastava, H.M. An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions. J. Adv. Engrg. Comput. 2021, 5, 135–166. [Google Scholar] [CrossRef]
- Srivastava, H.M. A survey of some recent developments on higher transcendental functions of analytic number theory and applied mathematics. Symmetry 2021, 13, 2294. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon & Breach Science Publishers: London, UK; New York, NY, USA, 1993. [Google Scholar]
- Dimovski, I. Operational calculus for a class of differential operators. CR Acad. Bulg. Sci. 1966, 19, 1111–1114. [Google Scholar]
- Karp, D.B.; Prilepkina, E.G. Completely Monotonic Gamma Ratio and Infinitely Divisible H-Function of Fox. Comput. Methods Funct. Theory 2016, 16, 135–153. [Google Scholar] [CrossRef]
- Mehrez, K. New integral representations for the Fox–Wright functions and its applications. J. Math. Anal. Appl. 2018, 468, 650–673. [Google Scholar] [CrossRef]
- Mehrez, K. Positivity of certain classes of functions related to the Fox H-functions with applications. Anal. Math. Phys. 2021, 11, 114. [Google Scholar] [CrossRef]
- Marichev, O.I. Volterra equation of Mellin convolution type with a horn function in the kernel. Vescì Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk 1974, 1, 128–129. [Google Scholar]
- Raina, R.K. Solution of Abel-type integral equation involving the Appell hypergeometric function. Integral Transforms Spec. Funct. 2010, 21, 515–522. [Google Scholar] [CrossRef]
- Saigo, M. A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. Kyushu Univ. 1978, 11, 135–143. [Google Scholar]
- Saigo, M.; Maeda, N. More generalization of fractional calculus. In Transform Methods and Special Functions, Proceedings of Second International Workshop, Varna, Bulgaria, 23–30 August 1996; Rusev, P., Dimovski, I., Kiryakova, V., Eds.; IMI-BAS: Sofia, Bulgaria, 1998; Volume 19, pp. 386–400. [Google Scholar]
- Sousa, J.V.d.C.; Oliveira, D.S.; de Oliveira, E.C. Grüss-Type Inequalities by Means of Generalized Fractional Integrals. Bull. Braz. Math. Soc. New Ser. 2019, 50, 1029–1047. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Srivastava, R.; Kasmani, R.M.; Alharbi, R. Complex Generalized Representation of Gamma Function Leading to the Distributional Solution of a Singular Fractional Integral Equation. Axioms 2023, 12, 1046. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Cattani, C. Fractional distributional representation of gamma function and the generalized kinetic equation. Alex. Eng. J. 2023, 82, 577–586. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassaddiq, A.; Srivastava, R.; Alharbi, R.; Kasmani, R.M.; Qureshi, S. New Inequalities Using Multiple Erdélyi–Kober Fractional Integral Operators. Fractal Fract. 2024, 8, 180. https://doi.org/10.3390/fractalfract8040180
Tassaddiq A, Srivastava R, Alharbi R, Kasmani RM, Qureshi S. New Inequalities Using Multiple Erdélyi–Kober Fractional Integral Operators. Fractal and Fractional. 2024; 8(4):180. https://doi.org/10.3390/fractalfract8040180
Chicago/Turabian StyleTassaddiq, Asifa, Rekha Srivastava, Rabab Alharbi, Ruhaila Md Kasmani, and Sania Qureshi. 2024. "New Inequalities Using Multiple Erdélyi–Kober Fractional Integral Operators" Fractal and Fractional 8, no. 4: 180. https://doi.org/10.3390/fractalfract8040180
APA StyleTassaddiq, A., Srivastava, R., Alharbi, R., Kasmani, R. M., & Qureshi, S. (2024). New Inequalities Using Multiple Erdélyi–Kober Fractional Integral Operators. Fractal and Fractional, 8(4), 180. https://doi.org/10.3390/fractalfract8040180