The Existence of Solutions for w-Weighted ψ-Hilfer Fractional Differential Inclusions of Order μ ∈ (1, 2) with Non-Instantaneous Impulses in Banach Spaces
Abstract
1. Introduction
2. Preliminaries and Notations
3. Existence of Solutions for Problem (1)
4. Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bernard, B.; Aneel, T. Dynamical Systems Coupled with Monotone Set-Valued Operators: Formalisms, Applications, Well-Posedness, and Stability. Siam Rev. 2020, 62, 3–129. [Google Scholar]
- Smirnov, G.V. Introduction to the Theory of Differential Inclusions; University of Porto, Porto, Portugal Product Code: GSM/41; American Mathematical Society: Lowcountry, RI, USA, 2002. [Google Scholar]
- Etemad, S.; Avci, I.; Kumar, P.; Baleanu, D.; Rezapour, S. Some novel mathematical analysis on the fractal-fractional model of the AH1N1/09 virus and its generalized Caputo-type version. Chaos Solitons Fractals 2022, 162, 112511. [Google Scholar] [CrossRef]
- Khana, H.; Alam, K.; Gulzar, H.; Etemad, S.; Rezapour, S. A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations. Math. Comput. Simul. 2022, 198, 455–473. [Google Scholar] [CrossRef]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Baleanu, D.; Lopes, A.M. Handbook of Fractional Calculus with Applications: Applications in Engineering, Life and Social Sciences, Part A; De Gruyter Reference: De Gruyter, Berlin, 2019; Volume 7. [Google Scholar]
- Lazopoulos, K.-A.; Lazopoulos, A.K. Fractional vector calculus and fluid mechanics. Mech. Behav. Mater. 2017, 26, 43–54. [Google Scholar] [CrossRef]
- Douglas, J.F. Some applications of fractional calculus to polymer science. Adv. Chem. Phys. 1997, 102, 121–191. [Google Scholar]
- Agur, Z.; Cojocaru, L.; Mazaur, G.; Anderson, R.M.; Danon, Y.L. Pulse mass measles vaccination across age shorts. Proc. Natl. Acad. Sci. USA 1993, 90, 11698–11702. [Google Scholar] [CrossRef]
- Ballinger, G.; Liu, X. Boundedness for impulsive delay differential equations and applications in populations growth models. Nonlinear Anal. TMA 2003, 53, 1041–1062. [Google Scholar] [CrossRef]
- Kevin, E.M. Church, Applications of Impulsive Differential Equations to the Control of Malaria Outbreaks and Introduction to Impulse Extension Equations: A General Framework to Study the Validity of Ordinary Differential Equation Models with Discontinuities in State, Corpus ID: 125227011, Mathematics, Medicine, Environmental Science. Ph.D. Thesis, Université d’Ottawa/University of Ottawa, Ottawa, ON, Canada, 2014. [Google Scholar] [CrossRef]
- Al Nuwairan, M.; Ibrahim, A.G. Nonlocal impulsive differential equations and inclusions involving Atangana-Baleanu fractional derivative in infinite dimensional spaces. AIMS Math. 2023, 8, 11752–11780. [Google Scholar] [CrossRef]
- Benchohra, M.; Karapınar, E.; Lazreg, J.E.; Salim, A. Fractional Differential Equations with Instantaneous Impulses. In Advanced Topics in Fractional Differential Equations; Springer: Cham, Switzerland, 2023; pp. 77–111. [Google Scholar]
- Alsheekhhussain, Z.; Ibrahim, A.G.; Jawarneh, Y. Properties of solution sets for ψ-Cauto fractional non-instantaneous impulsive semi-linear differential inclusions with infinite delay. Fractal Fract. 2023, 7, 545. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Hristova, S.; O’Regan, D. Non-Instantaneous Impulses in Differential Equations; Springer: New York, NY, USA, 2017. [Google Scholar]
- Terzieva, R. Some phenomena for non-instantaneous impulsive differential equations. Int. J. Pure Appl. Math. 2018, 119, 483–490. [Google Scholar]
- Xu, H.F.; Zhu, Q.X.; Zheng, W.X. Exponential stability of stochastic nonlinear delay systems subject to multiple periodic impulses. IEEE Trans. Autom. Control 2023. [Google Scholar] [CrossRef]
- Ibrahim, A.G. Differential Equations and inclusions of fractional order with impulse effect in Banach spaces. Bull. Malays. Math. Sci. Soc. 2020, 43, 69–109. [Google Scholar] [CrossRef]
- Wang, J.; Ibrahim, A.G.; O’Regan, D. Nonempties and compactness of the solution set for fractional evolution inclusions with non-instantaneous impulses. Electron. J. Differ. Equ. 2019, 2019, 37. [Google Scholar]
- Wang, J.R.; Ibrahim, A.G.; O’Regan, D.; Almandouh, A.A. Nonlocal fractional semilinear differential inclusions with noninstantaneous impulses of order α ∈ (1, 2). Int. J. Nonlinear Sci. Numer. Simul. 2021, 22, 593–603. [Google Scholar] [CrossRef]
- Agarwal, R.; Hristova, S.; O’Regan, D. Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions. J. Frankl. Inst. 2017, 354, 3097–3119. [Google Scholar] [CrossRef]
- Liu, K. Stability analysis for (w, c)-periodic non-instantaneous impulsive differential equations. AIMS Math. 2022, 7, 1758–1774. [Google Scholar] [CrossRef]
- Ziane, M. On the Solution Set for weighted fractional differential equations in Banach spaces. Differ. Equ. Dyn. Syst. 2020, 28, 419–430. [Google Scholar] [CrossRef]
- Mahmudov, N.I.; Emin, S. Fractional-order boundary value problems with Katugampola fractional integral conditions. Adv. Differ. Equ. 2018, 81, 1–17. [Google Scholar] [CrossRef]
- Sousa, J.; Vanterler, D.C.; Oliveira, D.S.; Frederico, G.S.F.; Delfim, F.M.; Torres, D.F.M. Existence, uniquness and controllability for Hilfer differential equations on times scales. Math. Meth. Appl. Sci. 2023, 46, 12378–12401. [Google Scholar] [CrossRef]
- Salim, A.; Benchohra, M.; Graef, J.R.; Lazreg, J.E. Boundary value problem for fractional order generalized Hilfer-type fractional derivative with non-instantaneous impulses. Fractal Fract. 2021, 5, 1. [Google Scholar] [CrossRef]
- Wang, J.R.; Ibrahim, A.G.; O’Regan, D. Global Attracting Solutions to Hilfer fractional noninstantaneous impulsive semilinear di erential inclusions of Sobolev type and with nonlocal conditions. Nonlinear Anal. Model. Control 2019, 24, 775–803. [Google Scholar]
- Wang, J.R.; Ibrahim, A.G.; O’Regan, D. Hilfer type fractional differential switched inclusions with noninstantaneous impulsive and nonlocal conditions. Nonlinear Anal. Model. Control 2018, 23, 921–941. [Google Scholar] [CrossRef]
- Gou, H.; Li, Y. Study on Hilfer-Katugampola fractional implicit differential equations with nonlocal conditions. Bull. Sci. Math. Matiques 2021, 167, 102944. [Google Scholar] [CrossRef]
- Oliveira, D.; Capelas De Oliveira, E. Hilfer-Katugakpola fractional derivative. Comput. Appl. Math. 2018, 37, 672–3690. [Google Scholar] [CrossRef]
- Berhail, A.; Tabouche, N.; Alzabut, J.; Samei, M.S. Using the Hilfer–Katugampola fractional derivative in initial-value Mathieu fractional differential equations with application to a particle in the plane. Adv. Contin. Discret. Model. 2022, 2022, 44. [Google Scholar] [CrossRef]
- Bhairat, S.P.; Samei, M.E. Nonexistence of global solutions for a Hilfer–Katugampola fractional differential problem. Partial. Equ. Appl. Math. 2023, 7, 100495. [Google Scholar] [CrossRef]
- Elsayed, A.M.; Harikrishnan, S.; Kanagarajan, K. On the existence and stability of boundary value problem for differential equation with Hilfer-Katugampola fractional derivative. Acta Math. Sci. 2019, 39, 1568–1578. [Google Scholar] [CrossRef]
- Asawasamrit, S.; Thadang, Y.; Ntouyas, S.K.; Tariboon, J. Non-instantaneous impulsive boundary value problems containing Caputo fractional derivative of a function with respect to another function and Riemann-Stieltjes fractional integral boundary conditions. Axioms 2021, 10, 130. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; Capelas de Oliveira, E. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simulat. 2018, 91, 72. [Google Scholar] [CrossRef]
- Abdo, M.S.; Pancha, S.K. Fractional Integro-Di erential Equations Involving ψ-Hilfer Fractional Derivative. Adv. Appl. Math. Mech. 2019, 11, 338–359. [Google Scholar]
- Thaiprayoon, C.; Sudsutad, W.; Ntouyas, S.K. Mixed nonlocal boundary value problem for implicit fractional integro-differential equations via ψ-Hilfer fractional derivative. Adv. Differ. Equ. 2021, 2021, 50. [Google Scholar] [CrossRef]
- Sudsutad, W.; Thaiprayoon, C.; Ntouyas, S.K. Existence and stability results for ψ-Hilfer fractional ntegro-differential equation with mixed nonlocal boundary conditions. Aims Math. 2021, 6, 4119–4141. [Google Scholar] [CrossRef]
- Kucchea, K.D.; Jyoti, P. Kharadea, J.P.; Sousab, J.; Vanterler, D.C. On the Nonlinear Impulsive ψ-Hilfer Fractional differential Equations. Math. Model. Anal. 2020, 25, 642–660. [Google Scholar] [CrossRef]
- Abbas, M.I. Non-instantaneous impulsive fractional integro-differential equations with proportional fractional derivatives with respect to another function. Stud. Univ. Babes-Bolyai Math. 2023, 68, 543–562. [Google Scholar] [CrossRef]
- Arul, R.; Karthikeyan, P.; Karthikeyan, K.; Geetha, P.; Alruwaily, Y.; Almaghamsi, L.; El-hady, E. On ψ-Hilfer fractional integro-differential equations with non-instantaneous impulsive conditions. Fractal Fract. 2022, 6, 732. [Google Scholar] [CrossRef]
- Ngo, V.H.; O’Regan, D. A remark on ψ-Hilfer fractional differential equations with noninstantaneous impulses. Math. Meth. Appl. Sci. 2020, 1–15. [Google Scholar]
- Ibrahim, A.G.; Elmandouh, A.A. Existence and stability of solutions of ψ-Hilfer fractional functional differential inclusions with non-instantaneous impulses. AIMS Math. 2021, 6, 10802–10832. [Google Scholar] [CrossRef]
- Sitho, S.; Ntouyas, S.K.; Samadi, A.; Tariboon, J. Boundary value problems for ψ-Hilfer type sequential fractional differential equations and inclusions with integral multi-point boundary conditions. Mathematics 2021, 9, 1001. [Google Scholar] [CrossRef]
- Dhayal, R.; Zhu, Q. Stability and controllability results of ψ-Hilfer fractional integro-differential systems under the influence of impulses. Chaos Solitons Fractals 2023, 168, 113105. [Google Scholar] [CrossRef]
- Afshari, H.; Karapınar, E. A discussion on the existence of positive solutions of the boundary value problems via ψ-Hilfer fractional derivative on b-metric spaces. Adv. Differ. Equ. 2020, 2020, 616. [Google Scholar] [CrossRef]
- Al-Refai, M. On weighted Atangana–Baleanu fractional operators. Adv. Differ. Equ. 2020, 2020, 3. [Google Scholar] [CrossRef]
- Al-Refai, M.; Jarrah, A.M. Fundamental results on weighted Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 2019, 126, 7–11. [Google Scholar] [CrossRef]
- Alshammari, M.; Alshammari, S.; Abdo, M.S. Existence theorems for hybrid fractional differential equations with ψ-weighted Caputo–Fabrizio derivatives. J. Math. 2023, 2023, 8843470. [Google Scholar] [CrossRef]
- Benial, K.; Souid, M.S.; Jarad, F.; Alqudah, M.A.; Abdeljawad, T. Boundary value problem of weighted fractional derivative of a function with a respect to another function of variable order. J. Inequalities Appl. 2023, 2023, 127. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Shah, K. On the weighted fractional operators of a function with respect to another function. Fractals 2020, 28, 2040011. [Google Scholar] [CrossRef]
- Banas, J.; Mursaleen, M. Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations; Springer: New Delhi, India, 2014. [Google Scholar]
- Kamenskii, M.; Obukhowskii, V.; Zecca, P. Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces; Walter de Gruyter: Berlin, Germany, 2001. [Google Scholar]
- Gabeleh, M.; Eberhard Malkowsky, E.; Mursaleen, M.; Rakocevic, V. A New Survey of Measures of Noncompactness and Their Applications. Axioms 2022, 11, 299. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, L. Representation of measures of noncompactness and its applications related to an initial value problem in Banach spaces. Sci. China Math. 2023, 66, 745–776. [Google Scholar] [CrossRef]
- Bothe, D. Multivalued perturbation of m-accerative differential inclusions. Israel J. Math. 1998, 108, 109–138. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsheekhhussain, Z.; Ibrahim, A.G.; Al-Sawalha, M.M.; Jawarneh, Y. The Existence of Solutions for w-Weighted ψ-Hilfer Fractional Differential Inclusions of Order μ ∈ (1, 2) with Non-Instantaneous Impulses in Banach Spaces. Fractal Fract. 2024, 8, 144. https://doi.org/10.3390/fractalfract8030144
Alsheekhhussain Z, Ibrahim AG, Al-Sawalha MM, Jawarneh Y. The Existence of Solutions for w-Weighted ψ-Hilfer Fractional Differential Inclusions of Order μ ∈ (1, 2) with Non-Instantaneous Impulses in Banach Spaces. Fractal and Fractional. 2024; 8(3):144. https://doi.org/10.3390/fractalfract8030144
Chicago/Turabian StyleAlsheekhhussain, Zainab, Ahmad Gamal Ibrahim, Mohammed Mossa Al-Sawalha, and Yousef Jawarneh. 2024. "The Existence of Solutions for w-Weighted ψ-Hilfer Fractional Differential Inclusions of Order μ ∈ (1, 2) with Non-Instantaneous Impulses in Banach Spaces" Fractal and Fractional 8, no. 3: 144. https://doi.org/10.3390/fractalfract8030144
APA StyleAlsheekhhussain, Z., Ibrahim, A. G., Al-Sawalha, M. M., & Jawarneh, Y. (2024). The Existence of Solutions for w-Weighted ψ-Hilfer Fractional Differential Inclusions of Order μ ∈ (1, 2) with Non-Instantaneous Impulses in Banach Spaces. Fractal and Fractional, 8(3), 144. https://doi.org/10.3390/fractalfract8030144