Space–Time Variations in the Long-Range Dependence of Sea Surface Chlorophyll in the East China Sea and the South China Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Methodology
2.2.1. The Cauchy Distribution
2.2.2. Multi-Fractional Generalized Cauchy Model
2.2.3. Statistical Analysis
3. Results
3.1. Descriptive Statistics of Sea Surface Chlorophyll Concentration Series
3.2. Variability of the Long-Range Dependence of Sea Surface Chlorophyll Series
3.3. Monthly and Seasonal Variations in Hurst Exponents for Sea Surface Chlorophyll
4. Discussion
4.1. The Impact of Anthropogenic Activity on the Long-Range Dependence of Sea Surface Chlorophyll Concentration
4.2. Seasonal Variation in the Long-Range Dependence of Sea Surface Chlorophyll Concentration
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Na, L.; Shaoyang, C.; Zhenyan, C.; Xing, W.; Yun, X.; Li, X.; Yanwei, G.; Tingting, W.; Xuefeng, Z.; Siqi, L. Long-Term Prediction of Sea Surface Chlorophyll-a Concentration Based on the Combination of Spatio-Temporal Features. Water Res. 2022, 211, 118040. [Google Scholar] [CrossRef]
- Katlane, R.; El Kilani, B.; Dhaoui, O.; Kateb, F.; Chehata, N. Monitoring of Sea Surface Temperature, Chlorophyll, and Turbidity in Tunisian Waters from 2005 to 2020 Using MODIS Imagery and the Google Earth Engine. Reg. Stud. Mar. Sci. 2023, 66, 103143. [Google Scholar] [CrossRef]
- Nichol, J.E.; Bilal, M.; Nazeer, M.; Wong, M.S. Urban Pollution. In Urban Informatics; Shi, W., Goodchild, M.F., Batty, M., Kwan, M.-P., Zhang, A., Eds.; The Urban Book Series; Springer: Singapore, 2021; pp. 243–258. ISBN 9789811589836. [Google Scholar]
- Xiao, X.; Huang, S.; He, J. The Impact of COVID-19 Lockdown on the Variation of Sea Surface Chlorophyll-a in Bohai Sea, China. Reg. Stud. Mar. Sci. 2023, 66, 103163. [Google Scholar] [CrossRef]
- Chen, C.; Jiang, H.; Zhang, Y. Anthropogenic Impact on Spring Bloom Dynamics in the Yangtze River Estuary Based on SeaWiFS Mission (1998–2010) and MODIS (2003–2010) Observations. Int. J. Remote Sens. 2013, 34, 5296–5316. [Google Scholar] [CrossRef]
- Niu, L.; Luo, X.; Hu, S.; Liu, F.; Cai, H.; Ren, L.; Ou, S.; Zeng, D.; Yang, Q. Impact of Anthropogenic Forcing on the Environmental Controls of Phytoplankton Dynamics between 1974 and 2017 in the Pearl River Estuary, China. Ecol. Indic. 2020, 116, 106484. [Google Scholar] [CrossRef]
- Feng, J.; Durant, J.M.; Stige, L.C.; Hessen, D.O.; Hjermann, D.Ø.; Zhu, L.; Llope, M.; Stenseth, N.C. Contrasting Correlation Patterns between Environmental Factors and Chlorophyll Levels in the Global Ocean. Glob. Biogeochem. Cycles 2015, 29, 2095–2107. [Google Scholar] [CrossRef]
- Hakspiel-Segura, C.; Martínez-López, A.; Antonio Delgado-Contreras, J.; Robinson, C.J.; Gómez-Gutiérrez, J. Temporal Variability of Satellite Chlorophyll-a as an Ecological Resilience Indicator in the Central Region of the Gulf of California. Prog. Oceanogr. 2022, 205, 102825. [Google Scholar] [CrossRef]
- Zhang, K.; Zhao, X.; Xue, J.; Mo, D.; Zhang, D.; Xiao, Z.; Yang, W.; Wu, Y.; Chen, Y. The Temporal and Spatial Variation of Chlorophyll a Concentration in the China Seas and Its Impact on Marine Fisheries. Front. Mar. Sci. 2023, 10, 1212992. [Google Scholar] [CrossRef]
- Zhan, H.; Shi, P.; Mao, Q.; Zhang, T. Long-Range Correlations in Remotely Sensed Chlorophyll in the South China Sea. Chin. Sci. Bull. 2006, 51, 45–49. [Google Scholar] [CrossRef]
- He, X.; Shi, S.; Geng, X.; Xu, L.; Zhang, X. Spatial-Temporal Attention Network for Multistep-Ahead Forecasting of Chlorophyll. Appl. Intell. 2021, 51, 4381–4393. [Google Scholar] [CrossRef]
- Ye, M.; Li, B.; Nie, J.; Qian, Y.; Yang, L.-L. Ca-STANet: Spatiotemporal Attention Network for Chlorophyll-a Prediction With Gap-Filled Remote Sensing Data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4203314. [Google Scholar] [CrossRef]
- He, J. Application of Generalized Cauchy Process on Modeling the Long-Range Dependence and Self-Similarity of Sea Surface Chlorophyll Using 23 Years of Remote Sensing Data. Front. Phys. 2021, 9, 551. [Google Scholar] [CrossRef]
- He, J.; Gao, Z.; Jiang, Y.; Li, M. Spatially Heterogeneity of Long-Range Dependence and Self-Similarity of Global Sea Surface Chlorophyll Concentration with Their Environmental Factors Analysis. Front. Mar. Sci. 2024. submitted. [Google Scholar]
- He, J.; Christakos, G.; Wu, J.; Li, M.; Leng, J. Spatiotemporal BME Characterization and Mapping of Sea Surface Chlorophyll in Chesapeake Bay (USA) Using Auxiliary Sea Surface Temperature Data. Sci. Total Environ. 2021, 794, 148670. [Google Scholar] [CrossRef]
- Fu, Y.; Xu, S.; Liu, J. Temporal-Spatial Variations and Developing Trends of Chlorophyll-a in the Bohai Sea, China. Estuar. Coast. Shelf Sci. 2016, 173, 49–56. [Google Scholar] [CrossRef]
- de Montera, L.; Jouini, M.; Verrier, S.; Thiria, S.; Crepon, M. Multifractal Analysis of Oceanic Chlorophyll Maps Remotely Sensed from Space. Ocean Sci. 2011, 7, 219–229. [Google Scholar] [CrossRef]
- Nieves, V.; Llebot, C.; Turiel, A.; Solé, J.; García-Ladona, E.; Estrada, M.; Blasco, D. Common Turbulent Signature in Sea Surface Temperature and Chlorophyll Maps. Geophys. Res. Lett. 2007, 34, GL030823. [Google Scholar] [CrossRef]
- Skákala, J.; Smyth, T.J. Complex Coastal Oceanographic Fields Can Be Described by Universal Multifractals. J. Geophys. Res. Ocean. 2015, 120, 6253–6265. [Google Scholar] [CrossRef]
- Peltier, R.-F.; Véhel, J.L. Multifractional Brownian Motion: Definition and Preliminary Results; Research Report; INRIA: Rocquencourt, France, 1995. [Google Scholar]
- Li, M. Modified Multifractional Gaussian Noise and Its Application. Phys. Scr. 2021, 96, 125002. [Google Scholar] [CrossRef]
- Li, M. Multi-Fractional Generalized Cauchy Process and Its Application to Teletraffic. Phys. A 2020, 550, 123982. [Google Scholar] [CrossRef]
- Li, M.; Zhao, W. Quantitatively Investigating the Locally Weak Stationarity of Modified Multifractional Gaussian Noise. Phys. A Stat. Mech. Its Appl. 2012, 391, 6268–6278. [Google Scholar] [CrossRef]
- Hu, S.; Liao, Z.; Hou, R.; Chen, P. Characteristic Sequence Analysis of Giant Panda Voiceprint. Front. Phys. 2022, 10, 839699. [Google Scholar] [CrossRef]
- Tong, Y.; Bu, X.; Chen, J.; Zhou, F.; Chen, L.; Liu, M.; Tan, X.; Yu, T.; Zhang, W.; Mi, Z.; et al. Estimation of Nutrient Discharge from the Yangtze River to the East China Sea and the Identification of Nutrient Sources. J. Hazard. Mater. 2017, 321, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Li, M. Fractal Time Series-A Tutorial Review. Math. Probl. Eng. 2010, 2010, 157264. [Google Scholar] [CrossRef]
- Adler, R.; Feldman, R.; Taqqu, M. A Practical Guide to Heavy Tails: Statistical Techniques and Applications; Birkhäuser: Boston, MA, USA, 1998. [Google Scholar]
- Doukhan, P.; Oppenheim, G.; Taqqu, M.S. (Eds.) Theory and Applications of Long-Range Dependence; SBirkhäuser: Boston, MA, USA, 2002. [Google Scholar]
- Li, M.; Zhao, W. On 1/f Noise. Math. Probl. Eng. 2012, 2012, 673648. [Google Scholar] [CrossRef]
- Li, M.; Li, J.-Y. Generalized Cauchy Model of Sea Level Fluctuations with Long-Range Dependence. Phys. A Stat. Mech. Its Appl. 2017, 484, 309–335. [Google Scholar] [CrossRef]
- Dodge, Y. Least Significant Difference Test. In The Concise Encyclopedia of Statistics; Springer: New York, NY, USA, 2008; pp. 302–304. ISBN 978-0-387-32833-1. [Google Scholar]
- Williams, L.; Abdi, H. Fisher’s Least Signiflcant Difierence (LSD) Test. In Encyclopedia of Research Design; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2010. [Google Scholar]
- Liu, Y.; Deng, B.; Du, J.; Zhang, G.; Hou, L. Nutrient Burial and Environmental Changes in the Yangtze Delta in Response to Recent River Basin Human Activities. Environ. Pollut. 2019, 249, 225–235. [Google Scholar] [CrossRef]
- Ge, J.; Shi, S.; Liu, J.; Xu, Y.; Chen, C.; Bellerby, R.; Ding, P. Interannual Variabilities of Nutrients and Phytoplankton off the Changjiang Estuary in Response to Changing River Inputs. J. Geophys. Res. Ocean. 2020, 125, e2019JC015595. [Google Scholar] [CrossRef]
- Huang, Q.; Shen, H.; Wang, Z.; Liu, X.; Fu, R. Influences of Natural and Anthropogenic Processes on the Nitrogen and Phosphorus Fluxes of the Yangtze Estuary, China. Reg Env. Change 2006, 6, 125–131. [Google Scholar] [CrossRef]
- Hua, W.; Huaiyu, Y.; Fengnian, Z.; Bao, L.; Wei, Z.; Yeye, Y. Dynamics of Nutrient Export from the Yangtze River to the East China Sea. Estuar. Coast. Shelf Sci. 2019, 229, 106415. [Google Scholar] [CrossRef]
- China’s State Oceanic Administration. Chinese Marine Environment Bulletin in 2022; State Oceanic Administration: Beijing, China, 2023.
- Li, R.; Liang, Z.; Hou, L.; Zhang, D.; Wu, Q.; Chen, J.; Gao, L. Revealing the Impacts of Human Activity on the Aquatic Environment of the Pearl River Estuary, South China, Based on Sedimentary Nutrient Records. J. Clean. Prod. 2023, 385, 135749. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, R.; Sun, C.; Zhang, P.; Feng, C.; Shen, Z. Spatial and Temporal Variations in Nitrogen and Phosphorous Nutrients in the Yangtze River Estuary. Mar. Pollut. Bull. 2012, 64, 2083–2089. [Google Scholar] [CrossRef]
- Jiang, Q.; He, J.; Wu, J.; He, M.; Bartley, E.; Ye, G.; Christakos, G. Space-Time Characterization and Risk Assessment of Nutrient Pollutant Concentrations in China’s Near Seas. J. Geophys. Res.: Ocean. 2019, 124, 4449–4463. [Google Scholar] [CrossRef]
- Liu, S.M.; Qi, X.H.; Li, X.; Ye, H.R.; Wu, Y.; Ren, J.L.; Zhang, J.; Xu, W.Y. Nutrient Dynamics from the Changjiang (Yangtze River) Estuary to the East China Sea. J. Mar. Syst. 2016, 154, 15–27. [Google Scholar] [CrossRef]
- Zhang, L.; Ni, Z.; Li, J.; Shang, B.; Wu, Y.; Lin, J.; Huang, X. Characteristics of Nutrients and Heavy Metals and Potential Influence of Their Benthic Fluxes in the Pearl River Estuary, South China. Mar. Pollut. Bull. 2022, 179, 113685. [Google Scholar] [CrossRef]
- Wang, M.; Gao, L. New Insights Into the Non-Conservative Behaviors of Nutrients Triggering Phytoplankton Blooms in the Changjiang (Yangtze) River Estuary. J. Geophys. Res. Ocean. 2022, 127, e2021JC017688. [Google Scholar] [CrossRef]
- Hu, J.; Wang, X.H. Progress on Upwelling Studies in the China Seas. Rev. Geophys. 2016, 54, 653–673. [Google Scholar] [CrossRef]
- He, J.; Chen, Y.; Wu, J.; Stow, D.A.; George, C. Space-Time Chlorophyll-a Retrieval in Optically Complex Waters That Accounts for Remote Sensing and Modeling Uncertainties and Improves Remote Estimation Accuracy. Water Res. 2020, 171, 115403. [Google Scholar] [CrossRef]
ID | Chl_Minimum | Chl_Maximum | Chl_Mean ± Standard Deviation | Chl_Coefficient of Variation | H_Mean ± Standard Deviation |
---|---|---|---|---|---|
M1 | 0.1356 | 50.8658 | 4.5975 ± 3.7523 a* | 0.8161 | 0.0797 ± 0.0899 a |
M2 | 0.0607 | 3.6647 | 0.2889 ± 0.2192 b | 0.7588 | 0.4072 ± 0.0999 b |
M3 | 0.0463 | 1.6592 | 0.1607 ± 0.0914 c | 0.5683 | 0.5016 ± 0.0831 c |
M4 | 0.0437 | 0.5228 | 0.1239 ± 0.0541 cd | 0.4362 | 0.5286 ± 0.0729 d |
M5 | 0.0467 | 1.1772 | 0.1181 ± 0.0589 cd | 0.4986 | 0.5391 ± 0.0703 e |
M6 | 0.0437 | 1.4624 | 0.1123 ± 0.0490 d | 0.4362 | 0.5431 ± 0.0690 f |
N1 | 0.0932 | 33.0401 | 3.5173 ± 2.2694 a | 0.6452 | 0.0948 ± 0.0889 a |
N2 | 0.0976 | 21.5406 | 0.8885 ± 0.9993 b | 1.1247 | 0.2749 ± 0.1179 b |
N3 | 0.0730 | 5.1777 | 0.3253 ± 0.2959 c | 0.9096 | 0.3957 ± 0.1010 c |
N4 | 0.0324 | 0.4974 | 0.1178 ± 0.0482 d | 0.4097 | 0.5276 ± 0.0615 d |
N5 | 0.0206 | 0.3076 | 0.0795 ± 0.0342 e | 0.4302 | 0.5601 ± 0.0682 e |
N6 | 0.0244 | 0.2237 | 0.0604 ± 0.0206 e | 0.3411 | 0.5909 ± 0.0674 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Li, M. Space–Time Variations in the Long-Range Dependence of Sea Surface Chlorophyll in the East China Sea and the South China Sea. Fractal Fract. 2024, 8, 102. https://doi.org/10.3390/fractalfract8020102
He J, Li M. Space–Time Variations in the Long-Range Dependence of Sea Surface Chlorophyll in the East China Sea and the South China Sea. Fractal and Fractional. 2024; 8(2):102. https://doi.org/10.3390/fractalfract8020102
Chicago/Turabian StyleHe, Junyu, and Ming Li. 2024. "Space–Time Variations in the Long-Range Dependence of Sea Surface Chlorophyll in the East China Sea and the South China Sea" Fractal and Fractional 8, no. 2: 102. https://doi.org/10.3390/fractalfract8020102
APA StyleHe, J., & Li, M. (2024). Space–Time Variations in the Long-Range Dependence of Sea Surface Chlorophyll in the East China Sea and the South China Sea. Fractal and Fractional, 8(2), 102. https://doi.org/10.3390/fractalfract8020102