A Fractal Study on Random Distribution of Recycled Concrete and Its Influence on Failure Characteristics
Abstract
:1. Introduction
2. Theory and Methods
2.1. Box Dimension Theory
2.2. Multifractal Spectrum Theory
2.3. Gray Relational Analysis
3. Numerical Simulation Method
3.1. Development of the Five-Phase Random Aggregate Model
3.2. Determination of Mesoscopic Parameters
3.3. Numerical Experiment of Uniaxial Compression Based on Meso-Concrete Model
4. Influence of Aggregate Distribution on Mechanical Behavior of Concrete
4.1. Fractal Study of Aggregate Distribution
4.1.1. Box Dimension
4.1.2. Multifractal Study of Aggregates
4.2. Influence of Aggregate Distribution on Peak Stress
4.3. Influence of Aggregate Distribution on Crack Morphology
4.4. Influence of Aggregate Distribution on the Damage Area of Each Phase Material at the Peak Value
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
The passing rate of the corresponding aggregate sieve hole | |
The fractal dimension of the current aggregate gradation | |
The largest screen size studied | |
The minimum sieve size | |
The continuous distribution and decreases at the rate of 1/2k | |
The non-empty real subset | |
The number of boxes corresponding to this scale | |
The metric space in dimension d | |
Measure | |
The linearity of the i-th calculation region, that is, the maximum length width when measured from all directions | |
The measure of the small region, the measure in this paper is the probability | |
The Holder index for short, which controls the singularity of the probability density and therefore also becomes the singularity index | |
The probability size of the selected i-th region | |
The multifractal spectrum, which represents the fractal characteristics corresponding to a series of subsets corresponding to different A-values in complex fractals | |
The characteristic function | |
The calculated Shapiro–Wilk eigenvalue | |
The multifractal dimension | |
The multifractal spectral width |
References
- Peng, Z.; Shi, C.; Shi, Z.; Lu, B.; Wan, S.; Zhang, Z.; Chang, J.; Zhang, T. Alkali-aggregate reaction in recycled aggregate concrete. J. Clean. Prod. 2020, 255, 120238. [Google Scholar] [CrossRef]
- López, C.M.; Carol, I.; Aguado, A. Meso-structural study of concrete fracture using interface elements. I: Numerical model and tensile behavior. Mater. Struct. 2008, 41, 583–599. [Google Scholar] [CrossRef]
- Du, X.L.; Jin, L. Three-dimensional Mesoscopic numerical simulation of failure of heterogeneous concrete materials. Eng. Mech. 2013, 30, 82–88. [Google Scholar]
- Xiao, J.; Li, W.; Corr, D.J.; Shah, S.P. Effects of interfacial transition zones on the stress-strain behavior of modeled recycled aggregate concrete. Cem. Concr. Res. 2013, 52, 82–99. [Google Scholar] [CrossRef]
- Siregar, A.P.N.; Rafiq, M.I.; Mulheron, M. Experimental investigation of the effects of aggregate size distribution on the fracture behaviour of high strength concrete. Constr. Build. Mater. 2017, 150, 252–259. [Google Scholar] [CrossRef]
- Unger, J.F.; Eckardt, S. Multiscale modeling of concrete: From mesoscale to macroscale. Arch. Comput. Methods Eng. 2011, 18, 341–393. [Google Scholar] [CrossRef]
- Wang, X.F.; Yang, Z.J.; Yates, J.R.; Jivkov, A.P.; Zhang, C. Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores. Constr. Build. Mater. 2015, 75, 35–45. [Google Scholar] [CrossRef]
- Zhou, J.H.; Guo, Y.Q.; Wang, X.T.; Kang, T.B. Effect of aggregate distribution on compressive strength of recycled concrete. Concrete 2017, 25–28. [Google Scholar] [CrossRef]
- Zhou, J.H.; Bian, C.; Wang, F.C.; Cao, Z.W. Effect of recycled aggregate distribution on ten-sile properties of recycled concrete. J. Shenyang Jianzhu Univ. (Nat. Sci. Ed.) 2015, 31, 267–275. [Google Scholar]
- Xiao, J.Z.; Lu, D.; Ma, Z.M. Microscopic numerical simulation of chloride ion diffusion in concrete considering random distribution of recycled coarse aggregate. J. Southeast Univ. (Nat. Sci. Ed.) 2014, 44, 1240–1245. [Google Scholar]
- Xiao, J.Z. Recycled Concrete; China Building Industry Press: Beijing, China, 2008. [Google Scholar]
- Aliha, M.R.M.; Ziari, H.; Mojaradi, B.; Jebalbarezi Sarbijan, M. Modes I and II stress intensity factors of semi-circular bend specimen computed for two-phase aggregate/mastic asphalt mixtures. Theor. Appl. Fract. Mech. 2020, 106, 102437. [Google Scholar] [CrossRef]
- Aliha, M.R.M.; Ziari, H.; Mojaradi, B.; Sarbijan, M.J. Heterogeneity effects on mixed-mode I/II stress intensity factors and fracture path of laboratory asphalt mixtures in the shape of SCB specimen. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 586–604. [Google Scholar] [CrossRef]
- Aliha, M.R.M.; Ziari, H.; Sobhani Fard, E.; Sarbijan, M.J. Heterogeneity effect on fracture parameters of a multilayer asphalt pavement structure containing a top-down crack and subjected to moving traffic loading. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 1349–1371. [Google Scholar] [CrossRef]
- Du, X.L.; Han, Y.Q.; Jin, L.; Zhang, R.B. Statistical analysis of effects of aggregate spatial distribution on compressive strength and softening curve of concrete. J. Water Conserv. 2015, 46–48, 631–639. [Google Scholar]
- Wang, X.P.; Wu, Z.Q. Multifractal spectrum and its application in materials research. Physics 1999, 26–31. [Google Scholar] [CrossRef]
- Yang, X.; Wang, F.; Yang, X.; Zhou, Q. Fractal dimension in concrete and implementation for meso-simulation. Constr. Build. Mater. 2017, 143, 464–472. [Google Scholar] [CrossRef]
- Cao, M.S.; Ren, Q.W.; Zhai, A.L.; Zhang, J. Experimental analysis of fractal damage characteristics of concrete structure. Rock Soil Mech. 2005, 26, 1570–1574. [Google Scholar] [CrossRef]
- Tang, S.W.; Li, Z.J.; Chen, E.; Shao, H.Y. Impedance measurement to characterize the pore structure in Portland cement paste. Constr. Build. Mater. 2014, 51, 106–112. [Google Scholar] [CrossRef]
- Yin, Y.J.; Ren, Q.W.; Shen, L.; Han, Y. Study on crack propagation and damage evolution of concrete based on fractal dimension. J. Hydraul. Eng. 2021, 52, 1270–1280. [Google Scholar]
- Liu, X.; Wang, C.; Deng, Y.; Cao, F. Computation of fractal dimension on conductive path of conductive asphalt concrete. Constr. Build. Mater. 2016, 115, 699–704. [Google Scholar] [CrossRef]
- Guo, L.X.; Li, S.; Zhong, L.; Guo, L.; Wang, L.; Zhang, F. Effect of aggregate particle shape and grade on mechanical properties of recycled concrete by numerical simulation. Mater. Rev. 2022, 36, 65–71. [Google Scholar]
- Ren, Q.W.; Yin, Y.J.; Shen, L. Fractal study of random distribution of concrete aggregates and its influence on failure characteristics. J. Hydraul. Eng. 2020, 51, 1267–1277+1288. [Google Scholar]
- Yang, X.; Wang, F. Random-fractal-method-based generation of meso-model for concrete aggregates. Powder Technol. 2015, 284, 63–77. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Zhao, Y.F.; Tseng, M.L.; Lim, M.K. Performance analysis and reuse of construction and demolition waste stone using fractal and gradation theory. J. Clean. Prod. 2020, 271, 122208. [Google Scholar] [CrossRef]
- Sahoo, M.; Sahoo, S.; Dhar, A.; Pradhan, B. Effectiveness evaluation of objective and subjective weighting methods for aquifer vulnerability assessment in urban context. J. Hydrol. 2016, 541, 1303–1315. [Google Scholar] [CrossRef]
- Guo, D. Research on Main Technical Requirements of High Quality Concrete Aggregate. Master’s Thesis, Beijing University of Civil Engineering and Architecture, Beijing, China, 2016. [Google Scholar]
- Li, T. Multifractal Principle and Some Applications. Master’s Thesis, Beijing Jiaotong University, Beijing, China, 2008. [Google Scholar]
- Xu, L.; Zhang, W.; Liang, X.L.; Xiao, R.; Cao, J.Q. Grey correlation degree analysis of pore structure parameters of rock and soil media. J. Nanjing Univ. (Nat. Sci.) 2018, 1105–1113. [Google Scholar] [CrossRef]
- Ertuğrul, İ.; Öztaş, T.; Özçil, A.; Öztaş, C.Z. Grey Relational Analysis Approach in Academic Performance Comparison of University a Case Study of Turkish Universities. 2016. Available online: https://hdl.handle.net/11499/28167 (accessed on 4 October 2024).
- Wang, Z.M.; Kwan, A.K.H.; Chan, H.C. Mesoscopic study of concrete I: Generation of random aggregate structure and finite element mesh. Comput. Struct. 1999, 70, 533–544. [Google Scholar] [CrossRef]
- Yin, Y.; Ren, Q. Studying the representative volume of concrete using the entropy weight-grey correlation model. Mag. Concr. Res. 2018, 70, 757–769. [Google Scholar] [CrossRef]
- Guo, L.; Guo, Y.; Zhong, L. ReseaRch on the back analysis and failure mechanism of recycled concrete aggregate meso-parameters based on Box-Behnken Design response surface model. J. Build. Eng. 2022, 51, 104317. [Google Scholar] [CrossRef]
- Li, Z. Effect of Aggregate Distribution on Compressive Strength of Recycled Concrete. Master’s Thesis, Shenyang Jianzhu University, Shenyang, China, 2016. [Google Scholar]
- Xue, P.F.; Xiang, Y.Q. Durability evaluation of concrete structures based on grey relational degree and fuzzy recognition. Concrete 2009, 14–16. [Google Scholar] [CrossRef]
Modulus of Elasticity (MPa) | Poisson’s Ratio | Tensile Strength (MPa) | |
---|---|---|---|
NCA | 3500 | 0.20 | 4.50 |
NAITZ | 1450 | 0.20 | 2.00 |
CM | 2330 | 0.22 | 2.75 |
CAWS | 5500 | 0.20 | 3.29 |
SAITZ | 3275 | 0.20 | 2.19 |
Class Number | D | Class Number | D | Class Number | D |
---|---|---|---|---|---|
Group 1 | 1.842 | Group 10 | 1.835 | Group 19 | 1.838 |
Group 2 | 1.839 | Group 11 | 1.836 | Group 20 | 1.836 |
Group 3 | 1.838 | Group 12 | 1.840 | Group 21 | 1.838 |
Group 4 | 1.836 | Group 13 | 1.833 | Group 22 | 1.836 |
Group 5 | 1.842 | Group 14 | 1.838 | Group 23 | 1.842 |
Group 6 | 1.838 | Group 15 | 1.840 | Group 24 | 1.836 |
Group 7 | 1.841 | Group 16 | 1.836 | Group 25 | 1.841 |
Group 8 | 1.835 | Group 17 | 1.843 | ||
Group 9 | 1.837 | Group 18 | 1.838 |
Fractal Dimension | Δα | The Failure Unit Area of Each Phase Material mm2 | ||||||
---|---|---|---|---|---|---|---|---|
Group | NCA | CM | NAITZ | CAWS | SAITZ | |||
1 | 1.446 | 1.9503 | 93 | 225 | 19.75 | 21 | 5.55 | |
2 | 1.512 | 1.9422 | 72 | 173 | 31.33 | 5 | 4.04 | |
3 | 1.463 | 1.9583 | 58 | 132 | 27.90 | 1 | 2.31 | |
4 | 1.508 | 1.9583 | 56 | 138 | 29.80 | 3 | 2.02 | |
5 | 1.506 | 1.9515 | 45 | 107 | 22.95 | 4 | 4.61 | |
6 | 1.422 | 1.9538 | 37 | 89 | 25.08 | 4 | 2.91 | |
7 | 1.400 | 1.9465 | 37 | 76 | 26.87 | 1 | 1.30 | |
8 | 1.523 | 1.9510 | 68 | 166 | 31.38 | 6 | 1.96 | |
9 | 1.525 | 1.9635 | 59 | 112 | 26.10 | 2 | 1.22 | |
10 | 1.442 | 1.9585 | 55 | 125 | 23.84 | 1 | 3.45 | |
11 | 1.500 | 1.9626 | 59 | 155 | 29.17 | 2 | 4.30 | |
12 | 1.482 | 1.9424 | 57 | 112 | 26.26 | 1 | 2.23 | |
13 | 1.467 | 1.9602 | 65 | 149 | 29.24 | 3 | 2.28 | |
14 | 1.428 | 1.9658 | 57 | 125 | 28.10 | 1 | 1.59 | |
15 | 1.512 | 1.9427 | 53 | 188 | 29.44 | 6 | 4.09 | |
16 | 1.419 | 1.9629 | 42 | 90 | 30.87 | 1 | 0.80 | |
17 | 1.471 | 1.9651 | 51 | 130 | 26.06 | 5 | 1.81 | |
18 | 1.488 | 1.9569 | 67 | 168 | 24.75 | 19 | 5.63 | |
19 | 1.398 | 1.9730 | 43 | 102 | 28.16 | 3 | 2.07 | |
20 | 1.461 | 1.9542 | 61 | 156 | 31.79 | 1 | 0.53 | |
21 | 1.443 | 1.9603 | 66 | 164 | 29.31 | 3 | 2.40 | |
22 | 1.486 | 1.9595 | 41 | 121 | 29.97 | 3 | 2.18 | |
23 | 1.526 | 1.9575 | 55 | 156 | 21.26 | 22 | 6.30 | |
24 | 1.471 | 1.9654 | 42 | 118 | 30.38 | 5 | 3.35 | |
25 | 1.410 | 1.9634 | 31 | 81 | 25.12 | 3 | 1.81 |
0 | 0 | 0 | 0 | 0 | 0 |
---|---|---|---|---|---|
0.271 | 0.277 | 0.541 | 0.808 | 0.318 | 0.05 |
0.388 | 0.425 | 0.401 | 0.964 | 0.596 | 0.008 |
… … | … … | … … | … … | … … | … … |
0.565 | 0.493 | 0.521 | 0.779 | 0.413 | 0.009 |
0.641 | 0.615 | 0.297 | 0.832 | 0.649 | 0.032 |
1 | 1 | 1 | 1 | 1 | 1 |
---|---|---|---|---|---|
0.643 | 0.638 | 0.475 | 0.377 | 0.606 | 0.907 |
0.557 | 0.535 | 0.549 | 0.336 | 0.451 | 0.985 |
… … | … … | … … | … … | … … | … … |
0.464 | 0.498 | 0.484 | 0.385 | 0.542 | 0.981 |
0.432 | 0.443 | 0.622 | 0.37 | 0.43 | 0.939 |
The Failure Unit Area of Each Phase Material mm2 | Δα | ||||
---|---|---|---|---|---|
NCA | CM | NAITZ | CAWS | SAITZ | |
0.549 | 0.556 | 0.594 | 0.427 | 0.531 | 0.949 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Liu, Q.; Zhong, L.; Yang, Y.; Zhang, J. A Fractal Study on Random Distribution of Recycled Concrete and Its Influence on Failure Characteristics. Fractal Fract. 2024, 8, 641. https://doi.org/10.3390/fractalfract8110641
Guo L, Liu Q, Zhong L, Yang Y, Zhang J. A Fractal Study on Random Distribution of Recycled Concrete and Its Influence on Failure Characteristics. Fractal and Fractional. 2024; 8(11):641. https://doi.org/10.3390/fractalfract8110641
Chicago/Turabian StyleGuo, Lixia, Qingxiang Liu, Ling Zhong, Yuqing Yang, and Jianwei Zhang. 2024. "A Fractal Study on Random Distribution of Recycled Concrete and Its Influence on Failure Characteristics" Fractal and Fractional 8, no. 11: 641. https://doi.org/10.3390/fractalfract8110641
APA StyleGuo, L., Liu, Q., Zhong, L., Yang, Y., & Zhang, J. (2024). A Fractal Study on Random Distribution of Recycled Concrete and Its Influence on Failure Characteristics. Fractal and Fractional, 8(11), 641. https://doi.org/10.3390/fractalfract8110641