Numerical Method for the Variable-Order Fractional Filtration Equation in Heterogeneous Media
Abstract
1. Introduction
2. Materials and Methods
2.1. Formulation of the Problem
2.2. Derivation of the Semi-Discrete Formulation
- (a)
- , .
- (b)
- , .
- (c)
- .
- (d)
2.3. Derivation of the Fully Discrete Scheme
2.4. Stability of the Numerical Scheme
2.5. Convergence of the Semi-Discrete Scheme
2.6. Convergence of the Fully Discrete Scheme
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caputo, M. Models of flux in porous media with memory. Water Resour. Res. 2000, 36, 693–705. [Google Scholar] [CrossRef]
- Agarwal, R.; Yadav, M.P.; Baleanu, D.; Purohit, S.D. Existence and uniqueness of miscible flow equation through porous media with a non singular fractional derivative. AIMS Math. 2020, 5, 1062–1073. [Google Scholar] [CrossRef]
- Kasmi, L.; Guerfi, A.; Mesloub, S. Existence of solution for 2-D time-fractional differential equations with a boundary integral condition. Adv. Differ. Equ. 2019, 2019, 511. [Google Scholar] [CrossRef]
- Obembe, A.D.; Hossain, M.E.; Abu-Khamsin, S.A. Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Pet. Sci. Eng. 2017, 152, 391–405. [Google Scholar] [CrossRef]
- Gazizov, R.K.; Lukashchuk, S.Y. Drobno-differencial’nyj podhod k modelirovaniyu processov fil’tracii v slozhnyh neodnorodnyh poristyh sredah. Vestn. UGATU 2017, 21, 104–112. [Google Scholar]
- Jia, J.; Wang, H.; Zheng, X. A preconditioned fast finite element approximation to variable-order time-fractional diffusion equations in multiple space dimensions. Appl. Numer. Math. 2021, 163, 15–29. [Google Scholar] [CrossRef]
- Wei, L.; Li, W. Local discontinuous Galerkin approximations to variable-order time-fractional diffusion model based on the Caputo–Fabrizio fractional derivative. Math. Comput. Simul. 2021, 188, 280–290. [Google Scholar] [CrossRef]
- Rajput, P.; Srivastava, N.; Singh, V.K. A high order numerical method for the variable order timefractional reaction-subdiffusion equation. Chin. J. Phys. 2023, 85, 431–444. [Google Scholar] [CrossRef]
- Li, J.; Kang, X.; Shi, X.; Song, Y. A second-order numerical method for nonlinear variable-order fractional diffusion equation with time delay. Math. Comput. Simul. 2024, 219, 101–111. [Google Scholar] [CrossRef]
- Alimbekova, N.; Berdyshev, A.; Baigereyev, D. A Priori Estimates for the Solution of an Initial Boundary Value Problem of Fluid Flow through Fractured Porous Media. Axioms 2022, 8, 408. [Google Scholar] [CrossRef]
- Baigereyev, D.; Omariyeva, D.; Temirbekov, N.; Yergaliyev, Y.; Boranbek, K. Numerical Method for a Filtration Model Involving a Nonlinear Partial Integro-Differential Equation. Mathematics 2022, 10, 1319. [Google Scholar] [CrossRef]
- Baigereyev, D.R.; Berdyshev, A.S.; Alimbekova, N.B. Galerkin Approximations for an Initial Boundary Problem of Transient Flow in Fractured Porous Media. Lobachevskii J. Math. 2022, 43, 3048–3056. [Google Scholar] [CrossRef]
- Wei, Q.; Zhou, H.; Yang, S. Non-Darcy flow models in porous media via Atangana-Baleanu derivative. Chaos Solitons Fractals 2020, 141, 110335. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. Caputo-Fabrizio Derivative Applied to Groundwater Flow within Confined Aquifer. J. Eng. Mech. 2016, 143, D4016005. [Google Scholar] [CrossRef]
- Ahmed Khalid, I.A.; Adam Haroon, D.S.; Almutairi, N.; Saber, S. Analytical solutions for a class of variableorder fractional Liu system under time-dependent variable coefficients. Results Phys. 2024, 56, 107311. [Google Scholar] [CrossRef]
- Baigereyev, D.; Alimbekova, N.; Berdyshev, A.; Madiyarov, M. Convergence Analysis of a Numerical Method for a Fractional Model of Fluid Flow inFractured Porous Media. Mathematics 2021, 9, 2179. [Google Scholar] [CrossRef]
- Sun, H.G.; Chang, A.; Zhang, Y.; Chen, W.V. A Review on Variable-Order Fractional Differential Equations: Mathematical Foundations, Physical Models, Numerical Methods and Applications. Fract. Calc. Appl. Anal. 2019, 22, 27–59. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, H.; Zhang, Y.; Sun, H.; Lin, J. A novel meshless method based on RBF for solving variable-order time fractional advection-diffusion-reaction equation in linear or nonlinear systems. Comput. Math. Appl. 2023, 142, 107–120. [Google Scholar] [CrossRef]
- Lorenzo, C.F.; Hartley, T.T. Variable Order and Distributed Order Fractional Operators. Nonlinear Dyn. 2002, 29, 57–98. [Google Scholar] [CrossRef]
- Ke, R.; Ng, M.; Sun, H. A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations. J. Comput. Phys. 2015, 303, 203–211. [Google Scholar] [CrossRef]
- Alimbekova, N.B.; Berdyshev, A.S.; Baigereyev, D.R. Parallel Implementation of the Algorithm for Solving a Partial Differential Equation with a Fractional Derivative in the Sense of Riemann-Liouville. In Proceedings of the 2021 IEEE International Conference on Smart Information Systems and Technologies (SIST), Nur-Sultan, Kazakhstan, 28–30 April 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Xu, T.; Lu, S.; Chen, W.; Chen, H. Finite difference scheme for multi-termvariable-order fractional diffusion equation. Adv. Differ. Equations 2018, 2018, 103. [Google Scholar] [CrossRef]
- Bhrawy, A.H.; Zaky, M.A. Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 2014, 80, 101–116. [Google Scholar] [CrossRef]
- Zhong, W.; Li, C.; Kou, J. Numerical Fractional-Calculus Model for Two-Phase Flow in fractured media. Adv. Math. Phys. 2013, 2013, 429835. [Google Scholar] [CrossRef]
- Feng, L.; Turner, I.; Perré, P.; Burrage, K. An investigation of nonlinear time-fractional anomalous diffusion models for simulating transport processes in heterogeneous binary media. Commun. Nonlinear Sci. Numer. Simul. 2021, 92, 105454. [Google Scholar] [CrossRef]
- Shao, B.; Yang, H.; Zhao, H. Scalable fully implicit methods for subsurface flows in porous media with fractional derivative. Comput. Math. Appl. 2023, 134, 55–65. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, H.; Tang, Z.; Li, B.; Qian, J.; Zhang, C. A fractional derivative model for nuclides transport in heterogeneous fractured media. J. Contam. Hydrol. 2023, 259, 104265. [Google Scholar] [CrossRef]
- El-Amin, M.F. Derivation of fractional-derivative models of multiphase fluid flows in porous media. J. King Saud Univ.-Sci. 2021, 33, 101346. [Google Scholar] [CrossRef]
- Hashan, M.; Jahana, L.N.; Zaman, T.U.; Imtiaz, S.; Hossain, M.E. Modelling of fluid flow through porous media using memory approach: A review. Math. Comput. Simul. 2020, 177, 643–673. [Google Scholar] [CrossRef]
- Obembe, A.D.; Hossain, M.E.; Mustapha, K.; Abu-Khamsin, S.A. A modified memory-based mathematical model describing fluid flow in porous media. Comput. Amp, Math. Appl. 2017, 73, 1385–1402. [Google Scholar] [CrossRef]
- Meilanov, R.R.; Akhmedov, E.N.; Beybalaev, V.D.; Magomedov, R.A.; Ragimkhanov, G.B.; Aliverdiev, A.A. To the theory of non-local non-isothermal filtration in porous medium. IOP Conf. Ser. J. Phys. Conf. Ser. 2018, 946, 012076. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Meng, Y. Solving generalized fractional problem on a funnel-shaped domain depicting viscoelastic fluid in porous medium. Appl. Math. Lett. 2022, 134, 108335. [Google Scholar] [CrossRef]
- Hashan, M.; Zaman, T.U.; Jahan, L.N.; Elhaj, M.; Imtiaz, S. Application of Memory Formalism and Fractional Derivative in Reservoir Simulation. In Proceedings of the SPE Trinidad and Tobago Section Energy Resources Conference, Port of Spain, Trinidad and Tobago, 25–26 June 2018; p. SPE-191213-MS. [Google Scholar]
- Jia, J.; Wang, H. Analysis of a hidden memory variably distributed-order space-fractional diffusion equation. Appl. Math. Lett. 2022, 124, 107617. [Google Scholar] [CrossRef]
- Blaszczyk, T.; Bekus, K.; Szajek, K.; Sumelka, W. Approximation and application of the Riesz-Caputo fractional derivative of variable order with fixed memory. Meccanica 2021, 57, 861–870. [Google Scholar] [CrossRef]
- Tvyordyj, D.A. Hereditary Riccati Equation with Fractional Derivative of Variable Order. J. Math. Sci. 2021, 253, 564–572. [Google Scholar] [CrossRef]
- Parovik, R.I. Explicit Finite-Difference Scheme for the Numerical Solution of the Model Equation of Nonlinear Hereditary Oscillator with Variable-Order Fractional Derivatives. Arch. Control Sci. 2016, 26, 429–435. [Google Scholar] [CrossRef]
- Sun, H.G.; Chen, W.; Sheng, H.; Chen, Y.Q. On mean square displacement behaviors of anomalous diffusions with variable and random orders. Phys. Lett. A 2010, 374, 906–910. [Google Scholar] [CrossRef]
- Hioual, A.; Ouannas, A.; Grassi, G.; Oussaeif, T. Nonlinear nabla variable-order fractional discrete systems: Asymptotic stability and application to neural networks. J. Comput. Appl. Math. 2023, 423, 114939. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, H.; Jiang, X. Physics-informed neural network algorithm for solving forward and inverse problems of variable-order space-fractional advection–diffusion equations. Neurocomputing 2023, 535, 64–82. [Google Scholar] [CrossRef]
- Cooper, G.R.J.; Cowan, D.R. Filtering using variable order vertical derivatives. Comput. Geosci. 2004, 30, 455–459. [Google Scholar] [CrossRef]
- Sun, H.G.; Chen, W.; Chen, Y.Q. Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A Stat. Mech. Its Appl. 2009, 388, 4586–4592. [Google Scholar] [CrossRef]
- Fu, Z.; Chen, W.; Ling, L. Method of approximate particular solutions for constant- and variable-order fractional diffusion models. Eng. Anal. Bound. Elem. 2015, 57, 37–46. [Google Scholar] [CrossRef]
- Jafari, H.; Ganji, R.M.; Salati, S.; Johnston, S.J. A mixed-method to numerical simulation of variable order stochastic advection diffusion equations. Alex. Eng. J. 2024, 89, 60–70. [Google Scholar] [CrossRef]
- Diaz, G.; Coimbra, C.F.M. Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dyn. 2008, 56, 145–157. [Google Scholar] [CrossRef]
- Ramirez, L.E.S.; Coimbra, C.F.M. A variable order constitutive relation for viscoelasticity. Ann. Phys. 2007, 519, 543–552. [Google Scholar] [CrossRef]
- Shen, S.; Liu, F.; Liu, Q.; Anh, V. Numerical simulation of anomalous infiltration in porous media. Numer. Algorithms 2014, 68, 443–454. [Google Scholar] [CrossRef]
- Gerasimov, D.N.; Kondratieva, V.A.; Sinkevich, O.A. An anomalous non-self-similar infiltration and fractional diffusion equation. Phys. D Nonlinear Phenom. 2010, 239, 1593–1597. [Google Scholar] [CrossRef]
- Zhang, M.; Jia, J.; Hendy, A.S.; Zaky, M.A.; Zheng, X. Fast numerical scheme for the time-fractional option pricing model with asset-price-dependent variable order. Appl. Numer. Math. 2023, 192, 414–430. [Google Scholar] [CrossRef]
- Bushnaq, S.; Shafiullah; Sarwar, M.; Alrabaiah, H. Existence theory and numerical simulations of variable order model of infectious disease. Results Appl. Math. 2023, 19, 100395. [Google Scholar] [CrossRef]
- Moualkia, S. Mathematical analysis of new variant Omicron model driven by Lévy noise and with variable-order fractional derivatives. Chaos Solitons Fractals 2023, 167, 113030. [Google Scholar] [CrossRef]
- Cai, W.; Chen, W.; Fang, J.; Holm, S. A Survey on Fractional Derivative Modeling of Power-Law Frequency-Dependent Viscous Dissipative and Scattering Attenuation in Acoustic Wave Propagation. Appl. Mech. Rev. 2018, 70, 030802. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, J.; Zhang, J. A variable-order time-fractional derivative model for chloride ions sub-diffusion inconcrete structures. Fract. Calc. Appl. Anal. 2013, 16, 76–92. [Google Scholar] [CrossRef]
- Duc, T.M.; Van, H.N. Stabilization of impulsive fractional-order dynamic systems involving the Caputo fractional derivative of variable-order via a linear feedback controller. Chaos Solitons Fractals 2021, 153, 111525. [Google Scholar] [CrossRef]
- Avcı, İ.; Hussain, A.; Kanwal, T. Investigating the impact of memory effects on computer virus population dynamics: A fractal–fractional approach with numerical analysis. Chaos Solitons Fractals 2023, 174, 113845. [Google Scholar] [CrossRef]
- Patnaik, S.; Hollkamp, J.P.; Semperlotti, F. Applications of variable-order fractional operators: A review. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020, 476, 20190498. [Google Scholar] [CrossRef]
- Sarwar, S. On the Existence and Stability of Variable Order Caputo Type Fractional Differential Equations. Fractal Fract. 2022, 6, 51. [Google Scholar] [CrossRef]
- Hussain, A.N.; Atangana, A.; Alkahtani, B.S. Study of a cauchy problem of fractional order derivative with variable order fractal dimension. Results Phys. 2023, 49, 106524. [Google Scholar] [CrossRef]
- Zhang, S.; Su, X. Unique existence of solution to initial value problem for fractional differential equation involving with fractional derivative of variable order. Chaos Solitons Fractals 2021, 148, 111040. [Google Scholar] [CrossRef]
- Abuasbeh, K.; Asia, K.; Ramsha, S.; Bilal, T.; Muna, A.A.; Muath, A. A Method for Solving Time-Fractional Initial Boundary Value Problems of Variable Order. Symmetry 2023, 15, 519. [Google Scholar] [CrossRef]
- Guo, Y.; Ye, G. Existence and Uniqueness of Weak Solutions to Variable-Order Fractional Laplacian Equations with Variable Exponents. J. Funct. Spaces 2021, 2021, 6686213. [Google Scholar] [CrossRef]
- Jong, K.S.; Choi, H.C.; Kim, M.C.; Kim, K.H.; Jo, S.H.; Ri, O. On the solvability and approximate solution of a one-dimensional singular problem for a p-Laplacian fractional differential equation. Chaos Solitons Fractals 2021, 147, 110948. [Google Scholar] [CrossRef]
- Van Bockstal, K. Existence of a unique weak solution to a non-autonomous time-fractional diffusion equation with space-dependent variable order. Adv. Differ. Equations 2021, 2021, 314. [Google Scholar] [CrossRef]
- Jiang, J.; Guirao, J.L.G.; Saeed, T. The existence of the extremal solution for the boundary value problems of variable fractional order differential equation with causal operator. Fractals 2020, 28, 2040025. [Google Scholar] [CrossRef]
- Refice, A.; Souid, M.S.; Yakar, A. Some qualitative properties of nonlinear fractional integrodifferential equations of variable order. Int. J. Optim. Control Theor. Appl. (IJOCTA) 2021, 11, 68–78. [Google Scholar] [CrossRef]
- Adel, M. Finite difference approach for variable order reaction–subdiffusion equations. Adv. Differ. Equations 2018, 2018, 406. [Google Scholar] [CrossRef]
- Ahmed, H.F.; Hashem, W.A. A fully spectral tau method for a class of linear and nonlinear variable-order timefractional partial differential equations in multi-dimensions. Math. Comput. Simul. 2023, 214, 388–408. [Google Scholar] [CrossRef]
- Ayazi, N.; Mokhtary, P.; Moghaddam, B.P. Efficiently solving fractional delay differential equations of variable order via an adjusted spectral element approach. Chaos Solitons Fractals 2024, 181, 114635. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Wu, L. An Operational Matrix Technique for Solving Variable Order Fractional Differential-Integral Equation Based on the Second Kind of Chebyshev Polynomials. Adv. Math. Phys. 2016, 2016, 6345978. [Google Scholar] [CrossRef]
- Heydari, M.H.; Avazzadeh, Z. An operational matrix method for solving variable-order fractional biharmonic equation. Comput. Appl. Math. 2018, 37, 4397–4411. [Google Scholar] [CrossRef]
- Zhao, T.; Wu, Y. Hermite Cubic Spline Collocation Method for Nonlinear Fractional Differential Equations with Variable-Order. Symmetry 2021, 13, 872. [Google Scholar] [CrossRef]
- Moghaddam, B.P.; Machado, J.A.T.; Behforooz, H. An integro quadratic spline approach for a class of variable-order fractional initial value problems. Chaos Solitons Fractals 2017, 102, 354–360. [Google Scholar] [CrossRef]
- Zhao, X.; Zhong, S.Z.; Karniadakis, G.E. Second-order approximations for variable order fractional derivatives: Algorithms and applications. J. Comput. Phys. 2015, 293, 184–200. [Google Scholar] [CrossRef]
- Ju, Y.; Liu, Z.; Yang, J.; Xu, Q. Meshfree methods for the nonlinear variable-order fractional advection–diffusion equation. Eng. Anal. Bound. Elem. 2023, 156, 126–143. [Google Scholar] [CrossRef]
- Ju, Y.; Yang, J.; Liu, Z.; Xu, Q. Meshfree methods for the variable-order fractional advection–diffusion equation. Math. Comput. Simul. 2023, 211, 489–514. [Google Scholar] [CrossRef]
- Qu, H.D.; Liu, X.; Lu, X.; ur Rahman, M.; She, Z.H. Neural network method for solving nonlinear fractional advection-diffusion equation with spatiotemporal variable-order. Chaos Solitons Fractals 2022, 156, 111856. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, X. Mathematical analysis and efficient finite element approximation for variable-order time-fractional reaction–diffusion equation with nonsingular kernel. Math. Methods Appl. Sci. 2021, 46, 8074–8088. [Google Scholar] [CrossRef]
- Atangana, A. Extension of rate of change concept: From local to nonlocal operators with applications. Results Phys. 2020, 19, 103515. [Google Scholar] [CrossRef]
- Ouyang, Y.; Wang, W. Comparison of Definition of Several Fractional Derivatives. In Proceedings of the 2016 6th International Conference on Education, Management and Computer Science (ICEMC 2016), Shenyang, China, 27–29 May 2016; pp. 553–557. [Google Scholar]
- Brezzi, F.; Fortin, M. Mixed and Hybrid Finite Element Methods; Springer: New York, NY, USA, 1991. [Google Scholar]
- Baigereyev, D.R.; Alimbekova, N.B.; Oskorbin, N.M. Error estimates of the numerical method for the filtration problem with Caputo-Fabrizio fractional derivatives. J. Math. Mech. Comput. Sci. 2022, 2, 101–116. [Google Scholar] [CrossRef]
- Yergaliyev, Y.; Madiyarov, M. Implicit Iterative Schemes for Solving Stationary Problems of an Incompressible Fluid with a Large Margin of Stability. In Computational and Information Technologies in Science, Engineering and Education, Proceedings of the 9th International Conference, CITech 2018, Ust-Kamenogorsk, Kazakhstan, 25–28 September 2018; Communications in Computer and Information Science; Shokin, Y., Shaimardanov, Z., Eds.; Springer: Cham, Switzerland, 2018; Volume 998. [Google Scholar] [CrossRef]
- Gazizov, R.K.; Kasatkin, A.A.; Lukashchuk, S.Y. Symmetries and exact solutions of fractional filtration equations. AIP Conf. Proc. 2017, 1907, 020010. [Google Scholar]
- Bulavatsky, V.M. Solutions of some problems of fractional-differential filtration dynamics based on models with ABC-fractional derivative. Cybern. Syst. Anal. 2017, 53, 732–742. [Google Scholar] [CrossRef]
- Qiu, X.; Lin, M.; Cao, G.; Jiang, W.; Ji, L. Dynamic simulation of immiscible displacement in fractured porous media. Phys. Fluids 2024, 36, 53105. [Google Scholar] [CrossRef]
- Ramirez, A.; Gonzalez, J.L.; Carrillo, F.; Lopez, S. Simulation of uncompressible fluid flow through a porous media. Chaos Solitons Fractals 2009, 39, 1753–1763. [Google Scholar] [CrossRef]
- Borgman, O.; Darwent, T.; Segre, E.; Goehring, L. and Holtzman, R. Immiscible fluid displacement in porous media with spatially correlated particle sizes. Adv. Water Resour. 2019, 128, 158–167. [Google Scholar] [CrossRef]
- Kamrava, S.; Sahimi, M. and Tahmasebi, P. Simulating fluid flow in complex porous materials by integrating the governing equations with deep-layered machines. NPJ Comput. Mater. 2021, 7, 127. [Google Scholar] [CrossRef]
Case 1 | Case 2 | Case 3 | ||||
---|---|---|---|---|---|---|
-Error | Order | -Error | Order | -Error | Order | |
1/10 | – | – | – | |||
1/20 | 2.13 | 2.02 | 2.01 | |||
1/40 | 2.03 | 2.00 | 1.99 | |||
1/80 | 2.01 | 1.99 | 1.99 | |||
1/160 | 2.00 | 1.98 | 1.97 |
Results from [16] | Our Results | |||
---|---|---|---|---|
-Error | Order | -Error | Order | |
1/10 | – | – | ||
1/20 | 1.46 | 2.05 | ||
1/40 | 1.47 | 1.99 | ||
1/80 | 1.48 | 1.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alimbekova, N.; Bakishev, A.; Berdyshev, A. Numerical Method for the Variable-Order Fractional Filtration Equation in Heterogeneous Media. Fractal Fract. 2024, 8, 640. https://doi.org/10.3390/fractalfract8110640
Alimbekova N, Bakishev A, Berdyshev A. Numerical Method for the Variable-Order Fractional Filtration Equation in Heterogeneous Media. Fractal and Fractional. 2024; 8(11):640. https://doi.org/10.3390/fractalfract8110640
Chicago/Turabian StyleAlimbekova, Nurlana, Aibek Bakishev, and Abdumauvlen Berdyshev. 2024. "Numerical Method for the Variable-Order Fractional Filtration Equation in Heterogeneous Media" Fractal and Fractional 8, no. 11: 640. https://doi.org/10.3390/fractalfract8110640
APA StyleAlimbekova, N., Bakishev, A., & Berdyshev, A. (2024). Numerical Method for the Variable-Order Fractional Filtration Equation in Heterogeneous Media. Fractal and Fractional, 8(11), 640. https://doi.org/10.3390/fractalfract8110640