Analytic Approach Solution to Time-Fractional Phi-4 Equation with Two-Parameter Fractional Derivative
Abstract
:1. Introduction
2. Some Definitions and Theorems of Fractional Calculus
3. Analytic Approach
4. Numerical Experiment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gómez-Aguilar, J.F.; Razo-Hernández, R.; Granados-Lieberman, D. A physical interpretation of fractional calculus in observables terms: Analysis of the fractional time constant and the transitory response. Rev. Mex. Física 2014, 60, 32–38. [Google Scholar]
- Agarwal, R.; Hristova, S.; O’Regan, D. Applications of Lyapunov functions to Caputo fractional differential equations. Mathematics 2018, 6, 229. [Google Scholar] [CrossRef]
- Alomari, A.K.; Drabseh, G.A.; Al-Jamal, M.F.; AlBadarneh, R.B. Numerical simulation for fractional phi-4 equation using homotopy Sumudu approach. Int. J. Simul. Process. Model. 2021, 16, 26–33. [Google Scholar] [CrossRef]
- Albuohimad, B.; Adibi, H.; Kazem, S. A numerical solution of time-fractional coupled Korteweg-de Vries equation by using spectral collection method. Ain Shams Eng. J. 2018, 9, 1897–1905. [Google Scholar] [CrossRef]
- Shah, R.; Khan, H.; Kumam, P.; Arif, M.; Baleanu, D. Natural transform decomposition method for solving fractional-order partial differential equations with proportional delay. Mathematics 2019, 7, 532. [Google Scholar] [CrossRef]
- Alquran, M.; Jarrah, A.; Krishnan, E.V. Solitary Wave Solutions of the Phi-Four Equation and the Breaking Soliton System by Means of Jacobi Elliptic Sine-Cosine Expansion Method. Nonlinear Dyn. Syst. Theory 2018, 18, 233–240. [Google Scholar]
- Zahra, W.K. Trigonometric B-Spline Collocation Method for Solving PHI-Four and Allen-Cahn Equations. Mediterr. J. Math. 2017, 14, 122. [Google Scholar] [CrossRef]
- Bhrawy, A.H.; Assas, L.M.; Alghamdi, M.A. An efficient spectral collocation algorithm for nonlinear Phi-four equations. Bound. Value Probl. 2013, 2013, 87. [Google Scholar] [CrossRef]
- Alquran, M.; Jaradat, H.M.; Syam, M.I. Analytical solution of the time-fractional phi-4 equation by using modified residual power series method. Nonlinear Dyn. 2017, 90, 2525–2529. [Google Scholar] [CrossRef]
- Ehsani, F.; Ehsani, F.; Hadi, A.; Hadi, N. Analytical solution of Phi-Four equation. Tech. J. Eng. Appl. Sci. 2013, 14, 1378–1388. [Google Scholar]
- Tariq, H.; Akram, G. New approach for exact solutions of time-fractional Cahn-Allen equation and time fractional Phi-4 equation. Phys. A 2017, 473, 352–362. [Google Scholar] [CrossRef]
- Gao, W.; Veeresha, P.; Prakasha, D.G.; Baskonus, H.M.; Yel, G. New numerical results for the time-fractional Phi-four equation using a novel analytical approach. Symmetry 2020, 12, 478. [Google Scholar] [CrossRef]
- Mishra, N.K.; AlBaidani, M.M.; Khan, A.; Ganie, A.H. Numerical Investigation of Time-Fractional Phi-Four Equation via Novel Transform. Symmetry 2023, 15, 687. [Google Scholar] [CrossRef]
- Liao, S.J. The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 1992. [Google Scholar]
- Liao, S. Notes on the homotopy analysis method: Some definitions and theorems. Commun. Nonlinear Sci. Numer. Simulat. 2009, 14, 983–997. [Google Scholar] [CrossRef]
- Liao, S. Homotopy Analysis Method in Non Linear Differential Equations; Springer: Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Saad, K.M.; L-Shareef, E.H.F.A.; Alomari, A.K.; Baleanud, D.; Gómez-Aguilar, J.F. On exact solutions for time-fractional Korteweg-de Vries and Korteweg-de Vries-Burger’s equations using homotopy analysis transform method. Chin. J. Phys. 2020, 63, 149–162. [Google Scholar] [CrossRef]
- Almeida, R.; Malinowska, A.B.; Odzijewicz, T. Fractional Differential Equations With Dependence on the Caputo-Katugampola Derivative. J. Comput. Nonlinear Dyn. 2016, 11, 061017. [Google Scholar] [CrossRef]
- Odibat, Z.; Baleanu, D. Numerical simulation of initial value problems with generalized Caputo-type fractional derivatives. Appl. Numer. Math. 2020, 156, 94–105. [Google Scholar] [CrossRef]
- Abdeljawad, T. Fractional operators with generalized Mittag-Leffler kernels and their iterated differintegrals. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 023102. [Google Scholar] [CrossRef]
- Alomari, A.K.; Abdeljawad, T.; Baleanu, D.; Saad, K.; Al-Mdallal, Q. Numerical solutions of fractional parabolic equations with generalized Mittag-Leffler kernels. Numer. Methods Partial. Differ. Equ. 2024, 40, e22699. [Google Scholar] [CrossRef]
- Alomari, A.K.; Alshbeel, A.; Azmi, A. Caputo-type of two parameters for fuzzy fractional differential equations using OHAM technique. Results Nonlinear Anal. 2023, 6, 157–176. [Google Scholar]
- Oliveira, D.S.; Oliveira, E. On a Caputo-type fractional derivative. Adv. Pure Appl. Math. 2019, 10, 81–91. [Google Scholar] [CrossRef]
x | |||
---|---|---|---|
−5 | |||
−3 | |||
−1 | |||
1 | |||
3 | |||
5 |
x | t | Exact | |||||
---|---|---|---|---|---|---|---|
Solution | |||||||
0.5 | |||||||
1 | |||||||
1.5 | |||||||
2 | |||||||
2.5 | |||||||
HAM Error | q-HATM Error | YTDM Error | HAM Error | q-HATM Error | YTDM Error | |
---|---|---|---|---|---|---|
x|t | 0.01 | 0.01 | 0.01 | 0.05 | 0.05 | 0.05 |
−5 | ||||||
−3 | ||||||
−1 | ||||||
1 | ||||||
3 | ||||||
5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massoun, Y.; Alomari, A.-K.; Cesarano, C. Analytic Approach Solution to Time-Fractional Phi-4 Equation with Two-Parameter Fractional Derivative. Fractal Fract. 2024, 8, 576. https://doi.org/10.3390/fractalfract8100576
Massoun Y, Alomari A-K, Cesarano C. Analytic Approach Solution to Time-Fractional Phi-4 Equation with Two-Parameter Fractional Derivative. Fractal and Fractional. 2024; 8(10):576. https://doi.org/10.3390/fractalfract8100576
Chicago/Turabian StyleMassoun, Youssouf, Abedel-Karrem Alomari, and Clemente Cesarano. 2024. "Analytic Approach Solution to Time-Fractional Phi-4 Equation with Two-Parameter Fractional Derivative" Fractal and Fractional 8, no. 10: 576. https://doi.org/10.3390/fractalfract8100576
APA StyleMassoun, Y., Alomari, A. -K., & Cesarano, C. (2024). Analytic Approach Solution to Time-Fractional Phi-4 Equation with Two-Parameter Fractional Derivative. Fractal and Fractional, 8(10), 576. https://doi.org/10.3390/fractalfract8100576