Multivariate Multiscale Higuchi Fractal Dimension and Its Application to Mechanical Signals
Abstract
:1. Introduction
2. Theory
2.1. Higuchi Fractal Dimension
2.2. Multivariate Higuchi Fractal Dimension
2.3. Multivariate Multiscale Higuchi Fractal Dimension
3. Analysis of Simulated Signals
3.1. Stability Testing Experiment
3.2. Computational Efficiency Testing Experiment
3.3. Classification Ability Testing Experiment
4. Analysis of Real Signals
4.1. Real Bearing Signal Differentiation Experiment
4.2. Real Gear Signal Differentiation Experiment
5. Conclusions
- (1)
- The use of MvHFD was proposed by introducing multichannel information processing, which realizes multichannel representation for the complexity of time series. MvmHFD, as an improvement of MvHFD, was proposed via the use of multiscale processing technology that achieves dual complexity characterization for multichannel and multiscale information.
- (2)
- The superiority of the proposed metric was verified by three sets of simulation experiments. The experimental results showed that MvHFD had the best stability and high computational efficiency, and MvmHFD had the strongest signal discrimination capability.
- (3)
- Two groups of real signals were used to test the effectiveness of MvmHFD, and the experimental results showed that MvmHFD had a stronger ability to discriminate mechanical signals than other metrics with each number of features, and the recognition rate reached 100% under multiple features, which is at least 16.4% higher than other metrics.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mandelbrot, B. How long is the coast of Britain? Statistical self-similarity and fractal dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef] [PubMed]
- Mandelbrot, B. Les Objects Fractals: Forme Hasard et Dimension; Flammarion: Paris, France, 1975. [Google Scholar]
- Mandelbrot, B. Fractal Object: Form, Chance and Dimension; Freeman: San Francisco, CA, USA, 1977. [Google Scholar]
- Li, Y.; Zhou, Y.; Jiao, S. Variable-Step Multiscale Katz Fractal Dimension: A New Nonlinear Dynamic Metric for Ship-Radiated Noise Analysis. Fractal Fract. 2024, 8, 9. [Google Scholar] [CrossRef]
- Li, Y.; Tang, B.; Jiao, S.; Su, Q. Snake Optimization-Based Variable-Step Multiscale Single Threshold Slope Entropy for Complexity Analysis of Signals. IEEE Trans. Instrum. Meas. 2023, 72, 6505313. [Google Scholar] [CrossRef]
- Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Phys. D Nonlinear Phenom. 1988, 31, 277–283. [Google Scholar] [CrossRef]
- Mayor, D.; Steffert, T.; Datseris, G.; Firth, A.; Panday, D.; Kandel, H.; Banks, D. Complexity and Entropy in Physiological Signals (CEPS): Resonance Breathing Rate Assessed Using Measures of Fractal Dimension, Heart Rate Asymmetry and Permutation Entropy. Entropy 2023, 25, 301. [Google Scholar] [CrossRef] [PubMed]
- Matteo, B.; Corrado, C.; Ausilia, V.; Caterina, P.; Beatrice, V.; Cristian, Z.; Luca, C.; Emiliano, S.; Marco, B.; Giuseppe, D. Motor unit synchronization and firing rate correlate with the fractal dimension of the surface EMG: A validation study. Chaos Solitons Fractals 2023, 167, 113021. [Google Scholar]
- Li, Y.; Jiao, S.; Deng, S.; Geng, B.; Li, Y. Refined composite variable-step multiscale multimapping dispersion entropy: A nonlinear dynamical index. Nonlinear Dyn. 2023. [Google Scholar] [CrossRef]
- Gagnepain, J.; RoQues-Carmes, C. Fractal approach to two dimensional and three dimensional surface roughness. Wear 1986, 109, 119–126. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Liang, L. Variable-step multi-scale fractal dimension and its application to ship radiated noise. Ocean Eng. 2023, 286, 115573. [Google Scholar] [CrossRef]
- Chen, X.; Peng, L.; Cheng, G.; Luo, C. Research on Degradation State Recognition of Planetary Gear Based on Multiscale Information Dimension of SSD and CNN. Complexity 2019, 2019, 8716979. [Google Scholar] [CrossRef]
- Yilmaz, A.; Unal, G. Multiscale Higuchi’s fractal dimension method. Nonlinear Dyn. 2020, 101, 1441–1455. [Google Scholar] [CrossRef]
- Li, Y.; Liang, L.; Zhang, S. Hierarchical Refined Composite Multi-Scale Fractal Dimension and Its Application in Feature Extraction of Ship-Radiated Noise. Remote Sens. 2023, 15, 3406. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, 2039–2049. [Google Scholar] [CrossRef] [PubMed]
- Chou, L.; Gong, S.; Yang, H.; Liu, J.; Chou, Y. A fast sample entropy for pulse rate variability analysis. Med. Biol. Eng. Comput. 2023, 61, 1603–1617. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Li, Y.; Zhai, Y.; Zhang, N.; Yu, H.; Tang, C.; Yan, Z.; Luo, E.; Xie, K. Effects of sampling rate on multiscale entropy of electroencephalogram time series. Biocybern. Biomed. Eng. 2023, 43, 233–245. [Google Scholar] [CrossRef]
- Guilherme, B.; Marcelo, Z.; Guilherme, F.; Paulo, R.; Adriano, B.; Thaína, A.; Leandro, A. Classification of non-Hodgkin lymphomas based on sample entropy signatures. Expert Syst. Appl. 2022, 202, 117238. [Google Scholar]
- Song, Y.; Crowcroft, J.; Zhang, J. Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. J. Neurosci. Methods 2012, 210, 132–146. [Google Scholar] [CrossRef]
- Alcaraz, R.; Rieta, J.J. Sample entropy of the main atrial wave predicts spontaneous termination of paroxysmal atrial fibrillation. Med. Eng. Phys. 2009, 31, 917–922. [Google Scholar] [CrossRef]
- Delgado-Bonal, A.; Marshak, A. Approximate Entropy and Sample Entropy: A Comprehensive Tutorial. Entropy 2019, 21, 541. [Google Scholar] [CrossRef]
- Ahmed, M.U.; Mandic, D.P. Multivariate multiscale entropy: A tool for complexity analysis of multichannel data. Phys. Rev. E 2011, 84, 061918. [Google Scholar] [CrossRef]
- Ahmed, M.U.; Chanwimalueang, T.; Thayyil, S.; Mandic, D. A Multivariate Multiscale Fuzzy Entropy Algorithm with Application to Uterine EMG Complexity Analysis. Entropy 2017, 19, 2. [Google Scholar] [CrossRef]
- Azami, H.; Fernández, A.; Escudero, J. Multivariate Multiscale Dispersion Entropy of Biomedical Times Series. Entropy 2019, 21, 913. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, H.; Yin, J.; Xu, M.; Chen, Y. Refined composite multivariate multiscale symbolic dynamic entropy and its application to fault diagnosis of rotating machine. Measurement 2020, 151, 107233. [Google Scholar] [CrossRef]
- Zhang, N.; Lin, A.; Ma, H.; Shang, P.; Yang, P. Weighted multivariate composite multiscale sample entropy analysis for the complexity of nonlinear times series. Phys. A Stat. Mech. Its Appl. 2018, 508, 595–607. [Google Scholar] [CrossRef]
- Yin, Y.; Shang, P. Multivariate multiscale sample entropy of traffic time series. Nonlinear Dyn. 2016, 86, 479–488. [Google Scholar] [CrossRef]
- Zhang, Y.; Shang, P. Multivariate multiscale distribution entropy of financial time series. Phys. A Stat. Mech. Its Appl. 2019, 515, 72–80. [Google Scholar] [CrossRef]
- Yin, Y.; Shang, P. Multivariate weighted multiscale permutation entropy for complex time series. Nonlinear Dyn. 2017, 8, 1707–1722. [Google Scholar] [CrossRef]
- Coelho, A.; Lima, C. Assessing fractal dimension methods as feature extractors for EMG signal classification. Eng. Appl. Artif. Intell. 2014, 36, 81–98. [Google Scholar] [CrossRef]
- Hu, J.; Tung, W.; Gao, J. Detection of low observable targets within sea clutter by structrure function based multifractal analysis. IEEE Trans Antennas Propag. 2006, 54, 136–143. [Google Scholar] [CrossRef]
- Shao, S.; Mcaleer, S.; Yan, R. Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning. IEEE Trans. Ind. Inform. 2019, 15, 2446–2455. [Google Scholar] [CrossRef]
- Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Parameter | Embedding Dimension | Delay Time | Threshold | Number of Categories |
---|---|---|---|---|
MvHFD | - | 20 | - | - - |
MvDE | 3 | 1 | - | - 6 |
MvFE | 2 | 1 | 0.15 | - - |
MvSE | 2 | 1 | 0.15 | - - |
MvPLZC | 3 | 1 | - | - - |
MvDELZC | 3 | 1 | - | 6 |
Metric | Different Scales | ARR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
MvmHFD | 83.0 | 70.2 | 56.4 | 63.0 | 70.4 | 72.8 | 55.4 | 56.2 | 77.4 | 69.8 | 67.36 |
MvmDE | 41.0 | 42.8 | 63.0 | 59.8 | 59.6 | 57.0 | 54.4 | 53.8 | 49.6 | 53.0 | 53.40 |
MvmFE | 48.0 | 51.2 | 5.08 | 59.8 | 55.6 | 49.0 | 50.6 | 49.0 | 50.4 | 51.0 | 46.97 |
MvmSE | 35.4 | 38.4 | 48.0 | 48.8 | 49.8 | 51.0 | 53.4 | 48.0 | 48.8 | 49.8 | 47.14 |
MvmPLZC | 40.8 | 26.8 | 24.4 | 35.4 | 42.4 | 43.4 | 40.2 | 41.8 | 42.6 | 44.4 | 38.22 |
MvmDELZC | 28.4 | 21.6 | 23.0 | 19.8 | 20.2 | 19.4 | 20.8 | 20.6 | 24.6 | 20.0 | 21.84 |
Metric | Number of Extracted Features | ||||||||
---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
MvmHFD | 97.8 | 100 | 100 | 100 | 100.0 | 100.0 | 100 | 100 | 100 |
MvmDE | 73.0 | 82.8 | 82.2 | 82.6 | 82.4 | 82.2 | 83.0 | 82.2 | 80.8 |
MvmFE | 67.6 | 72.4 | 74.6 | 74.6 | 75.2 | 76.2 | 75.2 | 74.2 | 73.8 |
MvmSE | 76.0 | 82.0 | 83.8 | 82.8 | 82.8 | 82.0 | 81.8 | 81.2 | 80.6 |
MvmPLZC | 68.2 | 75.6 | 78.0 | 80.0 | 81.4 | 82.8 | 83.6 | 83.4 | 82.2 |
MvmDELZC | 32.4 | 35.6 | 38.2 | 40.8 | 41.6 | 41.6 | 39.4 | 38.4 | 39.6 |
Metric | Different Scales | ARR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
MvmHFD | 89.8 | 63.4 | 71.2 | 50.2 | 62.0 | 61.4 | 65.4 | 73.2 | 63.8 | 58.4 | 65.88 |
MvmDE | 28.2 | 40.2 | 40.2 | 48.0 | 48.0 | 57.0 | 57.8 | 56.8 | 51.0 | 56.4 | 48.36 |
MvmFE | 23.8 | 41.6 | 43.2 | 49.0 | 50.6 | 56.4 | 55.8 | 59.2 | 55.2 | 55.8 | 49.06 |
MvmSE | 24.2 | 39.0 | 45.4 | 45.6 | 44.8 | 42.0 | 44.8 | 40.8 | 33.4 | 42.8 | 40.28 |
MvmPLZC | 22.2 | 31.2 | 25.8 | 29.2 | 35.0 | 31.0 | 29.0 | 27.8 | 26.4 | 24.8 | 28.24 |
MvmDELZC | 25.6 | 23.6 | 25.4 | 22.6 | 23.8 | 22.0 | 24.0 | 24.6 | 21.2 | 23.6 | 23.64 |
Metric | Number of Extracted Features | ||||||||
---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
MvmHFD | 99.4 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
MvmDE | 67.8 | 70.2 | 72.4 | 74.2 | 74.2 | 73.6 | 72.2 | 71.2 | 69.2 |
MvmFE | 71.6 | 77.6 | 80.4 | 80.8 | 81.6 | 82.0 | 82.6 | 82.2 | 83.0 |
MvmSE | 66.8 | 70.2 | 74.2 | 75.0 | 74.6 | 75.6 | 75.4 | 73.6 | 73.4 |
MvmPLZC | 53.0 | 66.8 | 71.0 | 73.0 | 74.8 | 76.0 | 76.4 | 75.6 | 74.0 |
MvmDELZC | 30.6 | 34.2 | 33.4 | 33.2 | 35.0 | 34.0 | 33.4 | 34.2 | 31.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, S.; Liang, L.; Ding, Q. Multivariate Multiscale Higuchi Fractal Dimension and Its Application to Mechanical Signals. Fractal Fract. 2024, 8, 56. https://doi.org/10.3390/fractalfract8010056
Li Y, Zhang S, Liang L, Ding Q. Multivariate Multiscale Higuchi Fractal Dimension and Its Application to Mechanical Signals. Fractal and Fractional. 2024; 8(1):56. https://doi.org/10.3390/fractalfract8010056
Chicago/Turabian StyleLi, Yuxing, Shuai Zhang, Lili Liang, and Qiyu Ding. 2024. "Multivariate Multiscale Higuchi Fractal Dimension and Its Application to Mechanical Signals" Fractal and Fractional 8, no. 1: 56. https://doi.org/10.3390/fractalfract8010056
APA StyleLi, Y., Zhang, S., Liang, L., & Ding, Q. (2024). Multivariate Multiscale Higuchi Fractal Dimension and Its Application to Mechanical Signals. Fractal and Fractional, 8(1), 56. https://doi.org/10.3390/fractalfract8010056