Next Article in Journal
Dynamics of the Three-Compartment Financial Bubble Model under the Mittag-Leffler Operator
Next Article in Special Issue
Certain Interpolative Proximal Contractions, Best Proximity Point Theorems in Bipolar Metric Spaces with Applications
Previous Article in Journal
Hydration and Fractal Analysis on Low-Heat Portland Cement Pastes Using Thermodynamics-Based Methods
Previous Article in Special Issue
Solving Generalized Heat and Generalized Laplace Equations Using Fractional Fourier Transform
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Solvability of a ϱ-Hilfer Fractional Snap Dynamic System on Unbounded Domains

1
Department of Mathematics, Radfan University College, University of Lahej, Lahej 73560, Yemen
2
Faculty of Exact and Natural Sciences, School of Physical Sciences and Mathematics, Pontifical Catholic University of Ecuador, Av. 12 de Octubre 1076 y Roca, Quito 170143, Ecuador
3
Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
4
Department of Mathematics, Faculty of Basic Science, Bu-Ali Sina University, Hamedan 65178-38695, Iran
5
Department of Math and Sciences, Community College of Qatar, Doha 7344, Qatar
6
Institut National Des Sciences Applique’e et de Technologie, Carthage University, Tunis 1054, Tunisia
*
Author to whom correspondence should be addressed.
Fractal Fract. 2023, 7(8), 607; https://doi.org/10.3390/fractalfract7080607
Submission received: 14 June 2023 / Revised: 2 July 2023 / Accepted: 2 July 2023 / Published: 7 August 2023

Abstract

:
This paper is devoted to studying the ϱ -Hilfer fractional snap dynamic system under the ϱ -Riemann–Liouville fractional integral conditions on unbounded domains [ a , ) , a 0 , for the first time. The results concerning the existence and uniqueness, along with the Ulam–Hyers, Ulam–Hyers–Rassias, and semi-Ulam–Hyers–Rassias stabilities, are established in an appropriate special Banach space according to fractional calculus, fixed point theory, and nonlinear analysis. At the end, a numerical example is presented for the interpretation of the main results.

1. Introduction

The study of fractional calculus has recently gained momentum and has become an important research area. Fractional derivatives provide excellent tools for characterizing the memory and genetic properties of various materials, processes, and dynamic systems [1,2,3,4,5,6,7,8,9]. In fractional calculus, many operators have appeared; one of these is called the Hilfer fractional derivative with respect to another non-negative increasing function ϱ ( ϱ -Hilfer fractional derivatives), and this has unified several operators that exist in the literature [10]. So, this definition has attracted the attention of many researchers and has been used to cover a variety of fractional differential problems; for example, see [11,12,13,14,15,16,17,18,19] and the references cited therein.
Fixed point theory is a mathematical discipline that explores the existence and behavior of fixed points of mappings. The study of fixed points has many applications in various fields, such as analysis, geometry, topology, physics, economics, and engineering. For instance, fixed point theory can be used to assess the stability of dynamic systems in physics. In general, fixed point theory provides a powerful tool for finding solutions to problems involving nonlinear equations and systems; we refer the readers to some works that have used fixed point techniques [20,21,22,23,24,25,26,27,28,29,30,31,32,33].
In 2021, Rezapour et al. focused on the existence of solutions and established four classes of the Hyres–Ulam stability of a generalized FBVP with a p-Laplacian operator and with three-point integral boundary conditions given by
C D a + ν 1 , ξ 1 φ p C D a + ν 2 , ξ 2 Ψ ( u ) = W u , Ψ ( u ) , u [ u 0 , K ] , u 0 0 , Ψ ( u 0 ) + μ 1 Ψ ( K ) = σ 1 0 K 1 ( r ) d r , μ 1 1 , Ψ ( u 0 ) + μ 2 Ψ ( K ) = σ 2 0 K 2 ( r ) d r , μ 2 u 0 K ξ 2 1 , C D a + ν 2 , ξ 2 Ψ ( u 0 ) = 0 , C D a + ν 2 , ξ 2 Ψ ( K ) = γ C D a + ν 2 , ξ 2 Ψ ( η ) , η ( u 0 , K ) ,
so that C D a + ν i , ξ i is a generalized derivative in the sense of Caputo and is of the order 0 < ν i < 1 and ξ i > 0 for i = 1 , 2 [34]. The authors of [35] investigated a snap dynamic system via simulations, analysis, and a real circuit in terms of integer derivatives:
D 1 Ψ 1 = Ψ 2 ( u ) , D 1 Ψ 2 = Ψ 3 ( u ) , D 1 Ψ 3 = Ψ 4 ( u ) , D 1 Ψ 4 = G Ψ 1 , Ψ 2 , Ψ 3 , Ψ 4 ,
where G ( Ψ 1 , Ψ 2 , Ψ 3 , Ψ 4 ) = a Ψ 1 Ψ 2 Ψ 4 + b Ψ 1 Ψ 3 , which can be reformulated as
D 4 Ψ 1 = G Ψ 1 , D 1 Ψ 1 , D 2 Ψ 1 , D 3 Ψ 1 .
In 2021, Mahmoud et al. ([36]) examined the qualitative properties of the following Caputo fractional snap dynamic system:
C D p Ψ 1 = Ψ 2 ( u ) , C D p Ψ 2 = Ψ 3 ( u ) , C D p Ψ 3 = Ψ 4 ( u ) , C D p Ψ 4 = 2 Ψ 1 Ψ 2 Ψ 4 + Ψ 1 Ψ 3 ,
where p = 0.95 . Recently, in 2021, Samei et al. [37] studied a new structure of the ϱ -Caputo fractional snap dynamic system with initial value boundary conditions on bounded domains [ a , b ] :
C D p 1 ; ϱ Ψ 1 ( u ) = Ψ 2 ( u ) , Ψ 1 ( a ) = λ 1 , u [ a , b ] , C D p 2 ; ϱ Ψ 2 ( u ) = Ψ 3 ( u ) , Ψ 2 ( a ) = λ 2 , C D p 3 ; ϱ Ψ 3 ( u ) = Ψ 4 ( u ) , Ψ 3 ( a ) = λ 3 , C D p 4 ; ϱ Ψ 4 ( u ) = G u , Ψ 1 , Ψ 2 , Ψ 3 , Ψ 4 , Ψ 4 ( a ) = λ 4 ,
where C D q ; ϱ is the ϱ -Caputo fractional derivative of the order q ( 0 , 1 ] and q { p 1 , p 2 , p 3 , p 4 } . Very recently, in 2022 [38], some authors established qualitative theories, such as those of existence, uniqueness, and Ulam–Hyers stability, for a nonlinear fractional snap dynamic system in the sense of ϱ -Caputo fractional derivatives under non-periodic boundary conditions on bounded domains [ a , b ] :
C D p 1 ; ϱ Ψ 1 ( u ) = Ψ 2 ( u ) , Ψ 1 ( a ) = λ 1 Ψ 1 ( b ) , C D p 2 ; ϱ Ψ 2 ( u ) = Ψ 3 ( u ) , Ψ 2 ( a ) = λ 2 Ψ 2 ( b ) , C D p 3 ; ϱ Ψ 3 ( u ) = Ψ 4 ( u ) , Ψ 3 ( a ) = λ 3 Ψ 3 ( b ) , C D p 4 ; ϱ Ψ 4 ( u ) = G u , Ψ 1 , Ψ 2 , Ψ 3 , Ψ 4 , Ψ 4 ( a ) = λ 4 Ψ 4 ( b ) .
Motivated by these articles and by a generalization of a recently published articles [39,40], our focus is centered on studying the existence and uniqueness, as well as various types of Ulam–Hyers stability, of solutions for the following ϱ -Hilfer fractional snap dynamic system on unbounded domains [ a , ) :
H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) = Ψ 2 ( u ) , H D a + α 2 , β 2 ; ϱ Ψ 2 ( u ) = Ψ 3 ( u ) , H D a + α 3 , β 3 ; ϱ Ψ 3 ( u ) = Ψ 4 ( u ) , H D a + α 4 , β 4 ; ϱ Ψ 4 ( u ) = G u , Ψ 1 ( u ) , Ψ 2 ( u ) , Ψ 3 ( u ) , Ψ 4 ( u ) ,
for u J : = [ a , ) , a 0 , under the ϱ -Riemann–Liouville (R-L) fractional integral conditions:
I a + 1 γ 1 ; ϱ Ψ 1 ( a ) = λ 1 I a + θ 1 ; ϱ ω 1 ( δ 1 ) , δ 1 J , θ 1 > 0 , I a + 1 γ 2 ; ϱ Ψ 2 ( a ) = λ 2 I a + θ 2 ; ϱ ω 2 ( δ 2 ) , δ 2 J , θ 2 > 0 , I a + 1 γ 3 ; ϱ Ψ 3 ( a ) = λ 3 I a + θ 3 ; ϱ ω 3 ( δ 3 ) , δ 3 J , θ 3 > 0 , I a + 1 γ 4 ; ϱ Ψ 4 ( a ) = λ 4 I a + θ 4 ; ϱ ω 4 ( δ 4 ) , δ 4 J , θ 4 > 0 ,
where λ i R , i = 1 , , 4 , H D a + α , β ; ϱ is the ϱ -Hilfer fractional derivative of order α ( 0 , 1 ] and type β [ 0 , 1 ] , where α { α i } and β { β i } , respectively, I a + θ ; ϱ is the ϱ -R-L fractional integral of order θ = { 1 γ i , θ i } , where α i γ i = α i + β i α i β i , and G : J × Σ 4 Σ and ω i : J Σ are continuous functions in the real Banach space Σ .
It is worth mentioning that the analysis space and approach in this paper are different from those in [36,37,38]. Additionally, the novelty and contributions of this work lie in the study of a more general ϱ -Hilfer fractional snap dynamic system under the ϱ -R-L fractional integral boundary conditions on unbounded domains [ a , ) , a 0 in a specially applicable Σ . In particular, it reduces to snap problem (3) when ϱ ( u ) = 1 , α i = 1 , β i 1 , and it reduces to snap problem (4) when ϱ ( u ) = 1 , α i = p , β i 1 ; it returns to snap problem (5) with boundary conditions at β i 1 , θ i 0 , ω i ( δ i ) = 1 , and it reduces to snap problem (6) with boundary conditions for β i 1 , θ i 0 , ω i ( δ i ) = Ψ i ( b ) . Moreover, we can conclude that there are many new problems that are special cases of our problem.
This paper is arranged as follows: In Section 2, we introduce various definitions and preliminaries. In Section 3, we establish the existence and uniqueness of the solution of the fractional snap system (4). In Section 4, we discuss several kinds of stability, such as Ulam–Hyers ( U . H ), Ulam–Hyers–Rassias ( U . H . R ), and semi-Ulam–Hyers–Rassias stability (s- U . H . R ). Finally, an example is given to illustrate the main results in Section 5.

2. Preliminaries

In this section, we recall some important preliminaries that are related to our analysis. The R-L fractional integral of an integrable function g on [ a , b ] of the order ϑ 1 > 0 and the R-L fractional derivative of a function g of the order ϑ 1 ( n 1 , n ] with respect to another function ϱ are given by
I a + ϑ 1 ; ϱ g ( u ) = 1 Γ ( ϑ 1 ) a u ϱ ( v ) ( ϱ ( u ) ϱ ( v ) ) ϑ 1 1 g ( v ) d v , u > a R ,
where ϱ C 1 ( [ a , b ] ) is an increasing function and Γ ( · ) is the following Euler Gamma function:
R D a + ϑ 1 ; ϱ g ( u ) = 1 ϱ ( u ) d d u n a u ( ϱ ( u ) ϱ ( v ) ) n ϑ 1 1 Γ ( n ϑ 1 ) ϱ ( v ) g ( v ) d v , u > a ,
where ϱ C n ( [ a , b ] ) is an increasing and integrable function with ϱ ( u ) 0 for each u [ a , b ] , and n = [ ϑ 1 ] + 1 such that [ ϑ 1 ] is an integer part of ϑ 1 [2].
Lemma 1.
([2]). Let ϑ 1 , ϑ 2 , ζ > 0 . Then,
(1)
I a + ϑ 1 ; ϱ I a + ϑ 2 ; ϱ ϱ ( u ) = I a + ϑ 1 + ϑ 2 ; ϱ g ( u ) ;
(2)
R D a + ϑ 1 ; ϱ I a + ϑ 1 ; ϱ g ( u ) = g ( u ) ;
(3)
I a + ϑ 1 ; ϱ ( ϱ ( u ) ϱ ( a ) ) ζ 1 ( u ) = Γ ( ζ ) Γ ( ζ + ϑ 1 ) ( ϱ ( u ) ϱ ( a ) ) ζ + ϑ 1 1 ;
(4)
R D a + ϑ ; ϱ ( ϱ ( u ) ϱ ( a ) ) ζ 1 ( u ) = Γ ( ζ ) Γ ( ζ ϑ ) ( ϱ ( u ) ϱ ( a ) ) ζ ϑ 1 , 0 < ϑ 1 .
Definition 1.
([10]). Let ϱ C n ( [ a , b ] ) be an increasing and integrable function with ϱ ( u ) 0 for u [ a , b ] . Then, the ϱ-Hilfer fractional derivative of a function g of the order ϑ 1 ( n 1 , n ] and type ϑ 2 [ 0 , 1 ] with respect to another function ϱ is defined by
H D a + ϑ 1 , ϑ 2 ; ϱ g ( u ) = I a + ϑ 2 ( n ϑ 1 ) ; ϱ 1 ϱ ( u ) d d u n I a + ( 1 ϑ 2 ) ( n ϑ 1 ) ; ϱ g ( u ) .
Moreover, the operator H D a + ϑ 1 , ϑ 2 ; ϱ can be written as
H D a + ϑ 1 , ϑ 2 ; ϱ = I a + ϑ 2 ( n ϑ 1 ) ; ϱ R D a + ϑ ; ϱ , ϑ = ϑ 1 + n ϑ 2 ϑ 1 ϑ 2 .
Lemma 2.
([2,10]). If ϑ 1 ( 0 , 1 ] , ϑ 2 [ 0 , 1 ] , 0 ϑ < 1 , ϑ = ϑ 1 + ϑ 2 ϑ 1 ϑ 2 , and g 1 C ( [ a , b ] ) , I a + 1 ϑ ; ϱ g C 1 ( [ a , b ] ) , then
I a + ϑ 1 ; ϱ H D a + ϑ 1 , ϑ 2 ; ϱ g ( u ) = I a + ϑ ; ϱ R D a + ϑ ; ϱ g ( u ) = g ( u ) ( ϱ ( u ) ϱ ( a ) ) ϑ 1 Γ ( ϑ ) I a + 1 ϑ ; ϱ g ( a ) , u [ a , b ] .
Theorem 1.
([41]). Assume that the generalized complete metric space is denoted by ( G , d ˜ ) and let the operator Λ : G G be contractive with the Lipschitz constant < 1 . If there is a positive integer r, where d ˜ ( Λ r + 1 u , Λ r u ) < , for some u G , then the following holds.
(i)
The sequence { Λ r } converges to a fixed point u 0 G ;
(ii)
u 0 is the unique fixed point of Λ in G * = { v G : d ˜ ( Λ r u , v ) < } ;
(iii)
If v G * , then d ˜ ( v , u 0 ) 1 1 d ˜ ( Λ v , v ) .
Clearly, the ϱ -Hilfer fractional snap dynamic system in (7) and (8) can be rewritten as follows:
H D a + α 4 , β 4 ; ϱ H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) = G ˘ Ψ 1 ( u ) , I a + 1 γ 1 ; ϱ Ψ 1 ( a ) = λ 1 I a + θ 1 ; ϱ ω 1 ( δ 1 ) , δ 1 J , θ 1 > 0 , I a + 1 γ 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( a ) = λ 2 I a + θ 2 ; ϱ ω 2 ( δ 2 ) , δ 2 J , θ 2 > 0 , I a + 1 γ 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( a ) = λ 3 I a + θ 3 ; ϱ ω 3 ( δ 3 ) , δ 3 J , θ 3 > 0 , I a + 1 γ 4 ; ϱ H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( a ) = λ 4 I a + θ 4 ; ϱ ω 4 ( δ 4 ) , δ 4 J , θ 4 > 0 ,
for u J = [ a , ) , a 0 , where
G ˘ Ψ 1 ( u ) = G u , Ψ 1 ( u ) , H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) , H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) , H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) .
Now, we consider the Banach space C ( J , Σ ) , which is endowed by the norm Ψ 1 Σ = sup u J Ψ 1 ( u ) . For the compatibility of our work and due to inspiration from [42,43,44,45], we introduce the following suitable special Banach space ( Ω , · Ω ) :
Ω = { Ψ 1 | Ψ 1 ( u ) C ( J , Σ ) , H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) , H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) , H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) C 1 ( J , Σ ) , sup u J Ψ 1 ( u ) ξ ( u ) < , sup u J 1 ξ ( u ) H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) < , sup u J 1 ξ ( u ) H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) < , sup u J 1 ξ ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) < } ,
which has the supremum norm
Ψ 1 Ω = max { sup u J Ψ 1 ( u ) ξ ( u ) , sup u J 1 ξ ( u ) H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) , sup u J 1 ξ ( u ) H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) , sup u J 1 ξ ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) } ,
where the function ξ : J ( 0 , ) is non-decreasing and continuous.

3. The Existence and Uniqueness Results

Firstly, we introduce an important corresponding fractional integral equation to the ϱ -Hilfer fractional snap dynamic system (10), as given in the next lemma.
Lemma 3.
Consider a continuous function Ψ 1 that is differentiable. Then, the solution of the ϱ-Hilfer fractional snap dynamic system (10) is given in the following fractional integral form:
Ψ 1 ( u ) = ( ϱ ( u ) ϱ ( a ) ) γ 1 1 Γ ( γ 1 ) λ 1 I a + θ 1 ; ϱ ω 1 ( δ 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 2 + α 1 1 Γ ( γ 2 + α 1 ) λ 2 I a + θ 2 ; ϱ ω 2 ( δ 2 ) + ( ϱ ( u ) ϱ ( a ) ) γ 3 + α 2 + α 1 1 Γ ( γ 3 + α 2 + α 1 ) λ 3 I a + θ 3 ; ϱ ω 3 ( δ 3 ) + ( ϱ ( u ) ϱ ( a ) ) γ 4 + α 3 + α 2 + α 1 1 Γ ( γ 4 + α 3 + α 2 + α 1 ) λ 4 I a + θ 4 ; ϱ ω 4 ( δ 4 ) + I a + α 4 + α 3 + α 2 + α 1 ; ϱ G ˘ Ψ 1 ( u ) .
Proof. 
In view of Lemma 2, and by applying I a + α 4 ; ϱ on both sides of (10), we have
H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) = ( ϱ ( u ) ϱ ( a ) ) γ 4 1 Γ ( γ 4 ) I a + 1 γ 4 ; ϱ H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( a ) + I a + α 4 ; ϱ G ˘ Ψ 1 ( u ) .
By using the boundary condition
I a + 1 γ 4 ; ϱ H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( a ) = λ 4 I a + θ 4 ; ϱ ω 4 ( δ 4 ) ,
we get
H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) = ( ϱ ( u ) ϱ ( a ) ) γ 4 1 Γ ( γ 4 ) λ 4 I a + θ 4 ; ϱ ω 4 ( δ 4 ) + I a + α 4 ; ϱ G ˘ Ψ 1 ( u ) .
Now, by applying I a + α 3 ; ϱ on both sides of (13) and by using Lemma 1 with the substitution of the boundary condition
I a + 1 γ 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( a ) = λ 3 I a + θ 3 ; ϱ ω 3 ( δ 3 ) ,
we find
H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) = ( ϱ ( u ) ϱ ( a ) ) γ 3 1 Γ ( γ 3 ) λ 3 I a + θ 3 ; ϱ ω 3 ( δ 3 ) + ( ϱ ( u ) ϱ ( a ) ) γ 4 + α 3 1 Γ ( γ 4 + α 3 ) λ 4 I a + θ 4 ; ϱ ω 4 ( δ 4 ) + I a + α 4 + α 3 ; ϱ G ˘ Ψ 1 ( u ) .
Again, by applying I a + α 2 ; ϱ on both sides of (14) and by substituting the boundary condition
I a + 1 γ 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( a ) = λ 2 I a + θ 2 ; ϱ ω 2 ( δ 2 ) ,
we obtain
H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) = ( ϱ ( u ) ϱ ( a ) ) γ 2 1 Γ ( γ 2 ) λ 2 I a + θ 2 ; ϱ ω 2 ( δ 2 ) + ( ϱ ( u ) ϱ ( a ) ) γ 3 + α 2 1 Γ ( γ 3 + α 2 ) λ 3 I a + θ 3 ; ϱ ω 3 ( δ 3 ) + ( ϱ ( u ) ϱ ( a ) ) γ 4 + α 3 + α 2 1 Γ ( γ 4 + α 3 + α 2 ) λ 4 I a + θ 4 ; ϱ ω 4 ( δ 4 ) + I a + α 4 + α 3 + α 2 ; ϱ G ˘ Ψ 1 ( u ) .
Similarly, with the boundary condition I a + 1 γ 1 ; ϱ Ψ 1 ( a ) = λ 1 I a + θ 1 ; ϱ ω 1 ( δ 1 ) and by applying I a + α 1 ; ϱ on both sides of (15), we have
Ψ 1 ( u ) = ( ϱ ( u ) ϱ ( a ) ) γ 1 1 Γ ( γ 1 ) λ 1 I a + θ 1 ; ϱ ω 1 ( δ 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 2 + α 1 1 Γ ( γ 2 + α 1 ) λ 2 I a + θ 2 ; ϱ ω 2 ( δ 2 ) + ( ϱ ( u ) ϱ ( a ) ) γ 3 + α 2 + α 1 1 Γ ( γ 3 + α 2 + α 1 ) λ 3 I a + θ 3 ; ϱ ω 3 ( δ 3 ) + ( ϱ ( u ) ϱ ( a ) ) γ 4 + α 3 + α 2 + α 1 1 Γ ( γ 4 + α 3 + α 2 + α 1 ) λ 4 I a + θ 4 ; ϱ ω 4 ( δ 4 ) + I a + α 4 + α 3 + α 2 + α 1 ; ϱ G ˘ Ψ 1 ( u ) .
Then, the proof is complete. □
Before establishing the existence and uniqueness results, we need to introduce the following hypotheses.
Hypothesis 1.
Let G : I × Ω 4 Ω be a continuously differentiable function, and we assume that σ i ( · ) 0 , ( i = 1 , , 4 ) are continuous functions satisfying
G u , Ψ 1 , Ψ 2 , Ψ 3 , Ψ 4 G u , Ψ ¯ 1 , Ψ ¯ 2 , Ψ ¯ 3 , Ψ ¯ 4 i = 1 4 σ i ( u ) Ψ i ( u ) Ψ ¯ i ( u ) ξ ( u ) ,
for all Ψ i , Ψ ¯ i Ω , ( i = 1 , 2 , 3 , 4 ) and u J .
Hypothesis 2.
There are constants L ˘ , Q ˘ > 0 , where Q ˘ ( 0 , 1 ) , and these satisfy the following restrictions:
sup u J 1 ξ ( u ) I a + α ; ϱ σ 1 ( u ) + σ 2 ( u ) + σ 3 ( u ) + σ 4 ( u ) Q ˘ < 1 ,
sup u J { 1 ξ ( u ) ( ( ϱ ( u ) ϱ ( a ) ) η 1 1 Γ ( η 1 ) | λ 1 | ω 1 * ( ϱ ( δ 1 ) ϱ ( a ) ) θ 1 Γ ( θ 1 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) η 2 1 Γ ( η 2 ) | λ 2 | ω 2 * ( ϱ ( δ 2 ) ϱ ( a ) ) θ 2 Γ ( θ 2 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) η 3 1 Γ ( η 3 ) | λ 3 | ω 3 * ( ϱ ( δ 3 ) ϱ ( a ) ) θ 3 Γ ( θ 3 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) η 4 1 Γ ( η 4 ) | λ 4 | ω 4 * ( ϱ ( δ 4 ) ϱ ( a ) ) θ 4 Γ ( θ 4 + 1 ) + I a + α ; ϱ G ˘ Ψ 1 ( 0 ) ) } L ˘ < ,
where ω i * = sup u [ a , δ i ] ω i ( δ i ) , ( i = 1 , , 4 ) , and
α = α 4 + α 3 + α 2 + α 1 , or α 4 + α 3 + α 2 , or α 4 + α 3 , or α 4 ; η 1 = γ 1 or γ 1 α 1 , or γ 1 α 2 α 1 , or γ 1 α 3 α 2 α 1 ; η 2 = γ 2 + α 1 , or γ 2 , or γ 2 α 2 , or γ 2 α 3 α 2 ; η 3 = γ 3 + α 2 + α 1 , or γ 3 + α 2 , or γ 3 , o r γ 3 α 3 ; η 4 = γ 4 + α 3 + α 2 + α 1 , or γ 4 + α 3 + α 2 , or γ 4 + α 3 , or γ 4 .
The following lemma is for the study of the existence and uniqueness of solutions for the ϱ -Hilfer fractional snap dynamic system (10), and it is used by employing the well-known Banach fixed point theorem.
Theorem 2.
If the hypotheses(HP 1 )and(HP 2 )hold, then, the ϱ-Hilfer fractional snap dynamic system (10) has one solution on the unbounded domain J.
Proof. 
Based on Lemma 3, let the mapping T : Ω Ω be defined as follows:
( T Ψ 1 ) ( u ) = ( ϱ ( u ) ϱ ( a ) ) γ 1 1 Γ ( γ 1 ) λ 1 I a + θ 1 ; ϱ ω 1 ( δ 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 2 + α 1 1 Γ ( γ 2 + α 1 ) λ 2 I a + θ 2 ; ϱ ω 2 ( δ 2 ) + ( ϱ ( u ) ϱ ( a ) ) γ 3 + α 2 + α 1 1 Γ ( γ 3 + α 2 + α 1 ) λ 3 I a + θ 3 ; ϱ ω 3 ( δ 3 ) + ( ϱ ( u ) ϱ ( a ) ) γ 4 + α 3 + α 2 + α 1 1 Γ ( γ 4 + α 3 + α 2 + α 1 ) λ 4 I a + θ 4 ; ϱ ω 4 ( δ 4 ) + I a + α 4 + α 3 + α 2 + α 1 ; ϱ G ˘ Ψ 1 ( u ) ,
where G ˘ Ψ 1 ( u ) is defined in Equation (11). For simplicity, let G ˘ Ψ 1 ( 0 ) = G ( u , 0 , 0 , 0 , 0 ) . Indeed, T maps Ω into Ω , that is, for any Ψ 1 Ω , by using (HP 1 ) and (HP 2 ), we get
( T Ψ 1 ) ( u ) ξ ( u ) ( ϱ ( u ) ϱ ( a ) ) γ 1 1 Γ ( γ 1 ) ξ ( u ) | λ 1 | I a + θ 1 ; ϱ ω 1 ( δ 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 2 + α 1 1 Γ ( γ 2 + α 1 ) ξ ( u ) | λ 2 | I a + θ 2 ; ϱ ω 2 ( δ 2 ) + ( ϱ ( u ) ϱ ( a ) ) γ 3 + α 2 + α 1 1 Γ ( γ 3 + α 2 + α 1 ) ξ ( u ) | λ 3 | I a + θ 3 ; ϱ ω 3 ( δ 3 ) + ( ϱ ( u ) ϱ ( a ) ) γ 4 + α 3 + α 2 + α 1 1 Γ ( γ 4 + α 3 + α 2 + α 1 ) ξ ( u ) | λ 4 | I a + θ 4 ; ϱ ω 4 ( δ 4 ) + 1 ξ ( u ) I a + α 4 + α 3 + α 2 + α 1 ; ϱ G ˘ Ψ 1 ( u ) ( ϱ ( u ) ϱ ( a ) ) γ 1 1 Γ ( γ 1 ) ξ ( u ) | λ 1 | ω 1 * ( ϱ ( δ 1 ) ϱ ( a ) ) θ 1 Γ ( θ 1 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 2 + α 1 1 Γ ( γ 2 + α 1 ) ξ ( u ) | λ 2 | ω 2 * ( ϱ ( δ 2 ) ϱ ( a ) ) θ 2 Γ ( θ 2 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 3 + α 2 + α 1 1 Γ ( γ 3 + α 2 + α 1 ) ξ ( u ) | λ 3 | ω 3 * ( ϱ ( δ 3 ) ϱ ( a ) ) θ 3 Γ ( θ 3 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 4 + α 3 + α 2 + α 1 1 Γ ( γ 4 + α 3 + α 2 + α 1 ) ξ ( u ) | λ 4 | ω 4 * ( ϱ ( δ 4 ) ϱ ( a ) ) θ 4 Γ ( θ 4 + 1 ) + 1 ξ ( u ) I a + α 4 + α 3 + α 2 + α 1 ; ϱ [ σ 1 ( u ) Ψ 1 ( u ) ξ ( u ) + σ 2 ( u ) H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) ξ ( u ) + σ 3 ( u ) H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) ξ ( u ) + σ 4 ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) ξ ( u ) ] + 1 ξ ( u ) I a + α 4 + α 3 + α 2 + α 1 ; ϱ G ˘ Ψ 1 ( 0 ) ( ϱ ( u ) ϱ ( a ) ) γ 1 1 Γ ( γ 1 ) ξ ( u ) | λ 1 | ω 1 * ( ϱ ( δ 1 ) ϱ ( a ) ) θ 1 Γ ( θ 1 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 2 + α 1 1 Γ ( γ 2 + α 1 ) ξ ( u ) | λ 2 | ω 2 * ( ϱ ( δ 2 ) ϱ ( a ) ) θ 2 Γ ( θ 2 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 3 + α 2 + α 1 1 Γ ( γ 3 + α 2 + α 1 ) ξ ( u ) | λ 3 | ω 3 * ( ϱ ( δ 3 ) ϱ ( a ) ) θ 3 Γ ( θ 3 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 4 + α 3 + α 2 + α 1 1 Γ ( γ 4 + α 3 + α 2 + α 1 ) ξ ( u ) | λ 4 | ω 4 * ( ϱ ( δ 4 ) ϱ ( a ) ) θ 4 Γ ( θ 4 + 1 ) + 1 ξ ( u ) I a + α 4 + α 3 + α 2 + α 1 ; ϱ G ˘ Ψ 1 ( 0 ) + Ψ 1 Ω ξ ( u ) I a + α 4 + α 3 + α 2 + α 1 ; ϱ i = 1 4 σ i ( u ) L ˘ + Q ˘ Ψ 1 Ω ,
for Q ˘ ( 0 , 1 ) . In addition, due to Equation (9), we have
1 ξ ( u ) H D a + α 1 , β 1 ; ϱ T Ψ 1 ( u ) ( ϱ ( u ) ϱ ( a ) ) γ 1 α 1 1 Γ ( γ 1 α 1 ) ξ ( u ) | λ 1 | I a + θ 1 ; ϱ ω 1 ( δ 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 2 1 Γ ( γ 2 ) ξ ( u ) | λ 2 | I a + θ 2 ; ϱ ω 2 ( δ 2 ) + ( ϱ ( u ) ϱ ( a ) ) γ 3 + α 2 1 Γ ( γ 3 + α 2 ) ξ ( u ) | λ 3 | I a + θ 3 ; ϱ ω 3 ( δ 3 ) + ( ϱ ( u ) ϱ ( a ) ) γ 4 + α 3 + α 2 1 Γ ( γ 4 + α 3 + α 2 ) ξ ( u ) | λ 4 | I a + θ 4 ; ϱ ω 4 ( δ 4 ) + 1 ξ ( u ) I a + α 4 + α 3 + α 2 ; ϱ G ˘ Ψ 1 ( u ) ( ϱ ( u ) ϱ ( a ) ) γ 1 α 1 1 Γ ( γ 1 α 1 ) ξ ( u ) | λ 1 | ω 1 * ( ϱ ( δ 1 ) ϱ ( a ) ) θ 1 Γ ( θ 1 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 2 1 Γ ( γ 2 ) ξ ( u ) | λ 2 | ω 2 * ( ϱ ( δ 2 ) ϱ ( a ) ) θ 2 Γ ( θ 2 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 3 + α 2 1 Γ ( γ 3 + α 2 ) ξ ( u ) | λ 3 | ω 3 * ( ϱ ( δ 3 ) ϱ ( a ) ) θ 3 Γ ( θ 3 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 4 + α 3 + α 2 1 Γ ( γ 4 + α 3 + α 2 ) ξ ( u ) | λ 4 | ω 4 * ( ϱ ( δ 4 ) ϱ ( a ) ) θ 4 Γ ( θ 4 + 1 ) + 1 ξ ( u ) I a + α 4 + α 3 + α 2 ; ϱ G ˘ Ψ 1 ( 0 ) + Ψ 1 Ω ξ ( u ) I a + α 4 + α 3 + α 2 ; ϱ i = 1 4 σ i ( u ) L ˘ + Q ˘ Ψ 1 Ω ,
1 ξ ( u ) H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ T Ψ 1 ( u ) ( ϱ ( u ) ϱ ( a ) ) γ 1 α 2 α 1 1 Γ ( γ 1 α 2 α 1 ) ξ ( u ) | λ 1 | ω 1 * ( ϱ ( δ 1 ) ϱ ( a ) ) θ 1 Γ ( θ 1 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 2 α 2 1 Γ ( γ 2 α 2 ) ξ ( u ) | λ 2 | ω 2 * ( ϱ ( δ 2 ) ϱ ( a ) ) θ 2 Γ ( θ 2 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 3 1 Γ ( γ 3 ) ξ ( u ) | λ 3 | ω 3 * ( ϱ ( δ 3 ) ϱ ( a ) ) θ 3 Γ ( θ 3 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 4 + α 3 1 Γ ( γ 4 + α 3 ) ξ ( u ) | λ 4 | ω 4 * ( ϱ ( δ 4 ) ϱ ( a ) ) θ 4 Γ ( θ 4 + 1 ) + 1 ξ ( u ) I a + α 4 + α 3 ; ϱ G ˘ Ψ 1 ( 0 ) + Ψ 1 Ω ξ ( u ) I a + α 4 + α 3 ; ϱ i = 1 4 σ i ( u ) L ˘ + Q ˘ Ψ 1 Ω ,
and
1 ξ ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ T Ψ 1 ( u ) ( ϱ ( u ) ϱ ( a ) ) γ 1 α 3 α 2 α 1 1 Γ ( γ 1 α 3 α 2 α 1 ) ξ ( u ) | λ 1 | ω 1 * ( ϱ ( δ 1 ) ϱ ( a ) ) θ 1 Γ ( θ 1 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 2 α 3 α 2 1 Γ ( γ 2 α 3 α 2 ) ξ ( u ) | λ 2 | ω 2 * ( ϱ ( δ 2 ) ϱ ( a ) ) θ 2 Γ ( θ 2 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 3 α 3 1 Γ ( γ 3 α 3 ) ξ ( u ) | λ 3 | ω 3 * ( ϱ ( δ 3 ) ϱ ( a ) ) θ 3 Γ ( θ 3 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 4 1 Γ ( γ 4 ) ξ ( u ) | λ 4 | ω 4 * ( ϱ ( δ 4 ) ϱ ( a ) ) θ 4 Γ ( θ 4 + 1 ) + 1 ξ ( u ) I a + α 4 ; ϱ G ˘ Ψ 1 ( 0 ) + Ψ 1 Ω ξ ( u ) I a + α 4 ; ϱ i = 1 4 σ i ( u ) L ˘ + Q ˘ Ψ 1 Ω ,
for Q ˘ ( 0 , 1 ) . Hence, Ψ 1 Ω L ˘ + Q ˘ Ψ 1 Ω < , which means that T : Ω Ω . Now, we will prove that T is contractive on Ω . By using (HP 1 ) and (HP 2 ), for any Ψ , Ψ 1 ¯ Ω , we find
( T Ψ 1 ) ( u ) ( T Ψ 1 ¯ ) ( u ) ξ ( u ) 1 ξ ( u ) I a + α 4 + α 3 + α 2 + α 1 ; ϱ G ˘ Ψ 1 ( u ) G ˘ Ψ 1 ¯ ( u ) 1 ξ ( u ) I a + α 4 + α 3 + α 2 + α 1 ; ϱ [ σ 1 ( u ) Ψ 1 ( u ) Ψ 1 ¯ ( u ) ξ ( u ) + σ 2 ( u ) H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) H D a + α 1 , β 1 ; ϱ Ψ 1 ¯ ( u ) ξ ( u ) + σ 3 ( u ) ξ ( u ) [ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ¯ ( u ) ] + σ 4 ( u ) ξ ( u ) [ H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ¯ ( u ) ] ] Ψ 1 Ψ 1 ¯ Ω ξ ( u ) I a + α 4 + α 3 + α 2 + α 1 ; ϱ i = 1 4 σ i ( u ) Q ˘ Ψ 1 Ω .
Likewise,
1 ξ ( u ) H D a + α 1 , β 1 ; ϱ T Ψ 1 ( u ) H D a + α 1 , β 1 ; ϱ T Ψ 1 ¯ ( u ) 1 ξ ( u ) I a + α 4 + α 3 + α 2 ; ϱ G ˘ Ψ 1 ( u ) G ˘ Ψ 1 ¯ ( u ) Ψ 1 Ψ 1 ¯ Ω ξ ( u ) I a + α 4 + α 3 + α 2 ; ϱ i = 1 4 σ i ( u ) Q ˘ Ψ 1 Ω , 1 ξ ( u ) H D a + α 2 , β 2 ; ϱ ( H D a + α 1 , β 1 ; ϱ T Ψ 1 ) ( u ) H D a + α 2 , β 2 ; ϱ ( H D a + α 1 , β 1 ; ϱ T Ψ 1 ¯ ) ( u ) 1 ξ ( u ) I a + α 4 + α 3 ; ϱ G ˘ Ψ 1 ( u ) G ˘ Ψ 1 ¯ ( u ) Ψ 1 Ψ 1 ¯ Ω ξ ( u ) I a + α 4 + α 3 ; ϱ i = 1 4 σ i ( u ) Q ˘ Ψ 1 Ω ,
and
1 ξ ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ T Ψ 1 ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ T Ψ 1 ¯ ( u ) 1 ξ ( u ) I a + α 4 ; ϱ G ˘ Ψ 1 ( u ) G ˘ Ψ 1 ¯ ( u ) Ψ 1 Ψ 1 ¯ Ω ξ ( u ) I a + α 4 ; ϱ i = 1 4 σ i ( u ) Q ˘ Ψ 1 Ω .
Thus, we conclude that
T Ψ 1 T Ψ 1 ¯ Ω Q ˘ Ψ 1 Ψ 1 ¯ Ω .
Since Q ˘ ( 0 , 1 ) , T is a contractive operator. According to the Banach fixed point theorem, the operator T possesses one fixed point Ψ 0 in Ω , i.e., T Ψ 0 = Ψ 0 . Hence, the ϱ -Hilfer fractional snap dynamic system (10) has one solution on the unbounded domain J. □

4. The Stability

Throughout this section, we will study different types of stability, such as U . H , U . H . R , and s- U . H . R . For definitions thereof and more details, we refer readers to [46]. The aim in this section is to define the appropriate metrics d 1 ( · ) and d 2 ( · ) on the Banach space Ω . The metric d 1 ( · ) is defined by
d 1 ( Ψ 1 , Ψ 1 ¯ ) = inf u J { N J | Ψ 1 ( u ) Ψ 1 ¯ ( u ) ξ ( u ) N υ ( u ) , 1 ξ ( u ) H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) H D a + α 1 , β 1 ; ϱ Ψ 1 ¯ ( u ) N υ ( u ) , 1 ξ ( u ) H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ¯ ( u ) N υ ( u ) , 1 ξ ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ¯ ( u ) N υ ( u ) } ,
for any non-negative, non-decreasing continuous function υ ( u ) on J, and the metric d 2 ( · ) is defined for any non-negative, non-increasing continuous function υ ( u ) on J as follows:
d 2 ( Ψ 1 , Ψ 1 ¯ ) = sup u J { N J | Ψ 1 ( u ) Ψ 1 ¯ ( u ) υ ( u ) ξ ( u ) N , H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) H D a + α 1 , β 1 ; ϱ Ψ 1 ¯ ( u ) υ ( u ) ξ ( u ) N , H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ¯ ( u ) υ ( u ) ξ ( u ) N , 1 υ ( u ) ξ ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ¯ ( u ) N } .
According to [47], it is not difficult to prove that d 1 ( · ) and d 2 ( · ) are metrics on a special Banach space Ω . Next, we state and prove the U . H , U . H . R , and s- U . H . R stability theorems on the unbounded domains J.
Theorem 3.
Assume that (HP 1 ) and (HP 2 ) hold and that Ψ 1 : J Ω is a continuously differentiable function, and let υ ( u ) be a non-negative, non-decreasing continuous function on J that satisfies
Ψ 1 ( u ) ( ϱ ( u ) ϱ ( a ) ) γ 1 1 Γ ( γ 1 ) λ 1 I a + θ 1 ; ϱ ω 1 ( δ 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 2 + α 1 1 Γ ( γ 2 + α 1 ) λ 2 I a + θ 2 ; ϱ ω 2 ( δ 2 ) + ( ϱ ( u ) ϱ ( a ) ) γ 3 + α 2 + α 1 1 Γ ( γ 3 + α 2 + α 1 ) λ 3 I a + θ 3 ; ϱ ω 3 ( δ 3 ) + ( ϱ ( u ) ϱ ( a ) ) γ 4 + α 3 + α 2 + α 1 1 Γ ( γ 4 + α 3 + α 2 + α 1 ) λ 4 I a + θ 4 ; ϱ ω 4 ( δ 4 ) + I a + α 4 + α 3 + α 2 + α 1 ; ϱ G ˘ Ψ 1 ( u ) I a + α 4 + α 3 + α 2 + α 1 ; ϱ υ ( u ) , u J ,
H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) ( ϱ ( u ) ϱ ( a ) ) γ 1 α 1 1 Γ ( γ 1 α 1 ) λ 1 I a + θ 1 ; ϱ ω 1 ( δ 1 ) ( ϱ ( u ) ϱ ( a ) ) γ 2 1 Γ ( γ 2 ) λ 2 I a + θ 2 ; ϱ ω 2 ( δ 2 ) ( ϱ ( u ) ϱ ( a ) ) γ 3 + α 2 1 Γ ( γ 3 + α 2 ) λ 3 I a + θ 3 ; ϱ ω 3 ( δ 3 ) ( ϱ ( u ) ϱ ( a ) ) γ 4 + α 3 + α 2 1 Γ ( γ 4 + α 3 + α 2 ) λ 4 I a + θ 4 ; ϱ ω 4 ( δ 4 ) I a + α 4 + α 3 + α 2 ; ϱ G ˘ Ψ 1 ( u ) I a + α 4 + α 3 + α 2 ; ϱ υ ( u ) ,
H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) ( ϱ ( u ) ϱ ( a ) ) γ 1 α 2 α 1 1 Γ ( γ 1 α 2 α 1 ) λ 1 I a + θ 1 ; ϱ ω 1 ( δ 1 ) ( ϱ ( u ) ϱ ( a ) ) γ 2 α 2 1 Γ ( γ 2 α 2 ) λ 2 I a + θ 2 ; ϱ ω 2 ( δ 2 ) ( ϱ ( u ) ϱ ( a ) ) γ 3 1 Γ ( γ 3 ) λ 3 I a + θ 3 ; ϱ ω 3 ( δ 3 ) ( ϱ ( u ) ϱ ( a ) ) γ 4 + α 3 1 Γ ( γ 4 + α 3 ) λ 4 I a + θ 4 ; ϱ ω 4 ( δ 4 ) I a + α 4 + α 3 ; ϱ G ˘ Ψ 1 ( u ) I a + α 4 + α 3 ; ϱ υ ( u ) ,
H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) ( ϱ ( u ) ϱ ( a ) ) γ 1 α 3 α 2 α 1 1 Γ ( γ 1 α 3 α 2 α 1 ) λ 1 I a + θ 1 ; ϱ ω 1 ( δ 1 ) ( ϱ ( u ) ϱ ( a ) ) γ 2 α 3 α 2 1 Γ ( γ 2 α 3 α 2 ) λ 2 I a + θ 2 ; ϱ ω 2 ( δ 2 ) ( ϱ ( u ) ϱ ( a ) ) γ 3 α 3 1 Γ ( γ 3 α 3 ) λ 3 I a + θ 3 ; ϱ ω 3 ( δ 3 ) ( ϱ ( u ) ϱ ( a ) ) γ 4 1 Γ ( γ 4 ) λ 4 I a + θ 4 ; ϱ ω 4 ( δ 4 ) I a + α 4 ; ϱ G ˘ Ψ 1 ( u ) I a + α 4 ; ϱ υ ( u ) ,
for u J . Then, there is one solution Ψ 0 Ω for all u J and 0 < Q ˘ < 1 , which satisfies
1 ξ ( u ) Ψ 1 ( u ) Ψ 0 ( u ) M 1 Q ˘ υ ( u ) , 1 ξ ( u ) H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) H D a + α 1 , β 1 ; ϱ Ψ 0 ( u ) M 1 Q ˘ υ ( u ) , 1 ξ ( u ) H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 0 ( u ) M 1 Q ˘ υ ( u ) , 1 ξ ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 0 ( u ) M 1 Q ˘ υ ( u ) ,
where
sup u J ( ϱ ( u ) ϱ ( a ) ) α Γ ( α + 1 ) ξ ( u ) M < ,
which implies that the solution of the ϱ-Hilfer fractional snap dynamic system (10) is U . H . R stable and, accordingly, is U . H stable.
Proof. 
At the beginning, T : Ω Ω was as defined in (19). By the metric d 1 ( · ) and hypotheses (HP 1 ) and (HP 2 ), for any Ψ 1 , Ψ 1 ¯ Ω , we have
1 ξ ( u ) T Ψ 1 ( u ) T Ψ 1 ¯ ( u ) N υ ( u ) ξ ( u ) I a + α 4 + α 3 + α 2 + α 1 ; ϱ i = 1 4 σ i ( u ) Q ˘ N υ ( u ) , 1 ξ ( u ) H D a + α 1 , β 1 ; ϱ T Ψ 1 ( u ) H D a + α 1 , β 1 ; ϱ T Ψ 1 ¯ ( u ) N υ ( u ) ξ ( u ) I a + α 4 + α 3 + α 2 ; ϱ i = 1 4 σ i ( u ) Q ˘ N υ ( u ) , 1 ξ ( u ) H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ T Ψ 1 ( u ) H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ T Ψ 1 ¯ ( u ) N υ ( u ) ξ ( u ) I a + α 4 + α 3 ; ϱ i = 1 4 σ i ( u ) Q ˘ N υ ( u ) ,
and
1 ξ ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ T Ψ 1 ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ T Ψ 1 ¯ ( u ) N υ ( u ) ξ ( u ) I a + α 4 ; ϱ i = 1 4 σ i ( u ) Q ˘ N υ ( u ) ,
for Q ˘ ( 0 , 1 ) . Hence, we find
d 1 T Ψ 1 , T Ψ 1 ¯ Q ˘ N = Q ˘ d 1 Ψ 1 , Ψ 1 ¯ , 0 < Q ˘ < 1 .
Next, due to inequalities (20)–(23), we get
( Ψ 1 ) ( u ) ( T Ψ 1 ) ( u ) ξ ( u ) sup u J ( ϱ ( u ) ϱ ( a ) ) α 4 + α 3 + α 2 + α 1 Γ ( α 4 + α 3 + α 2 + α 1 + 1 ) ξ ( u ) υ ( u ) = M υ ( u ) ,
1 ξ ( u ) H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) H D a + α 1 , β 1 ; ϱ T Ψ 1 ( u ) sup u J υ ( u ) ( ϱ ( u ) ϱ ( a ) ) α 4 + α 3 + α 2 Γ ( α 4 + α 3 + α 2 + 1 ) ξ ( u ) = M υ ( u ) ,
1 ξ ( u ) H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ T Ψ 1 ( u ) sup u J ( ϱ ( u ) ϱ ( a ) ) α 4 + α 3 Γ ( α 4 + α 3 + 1 ) ξ ( u ) υ ( u ) = M υ ( u ) ,
and
1 ξ ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ T Ψ 1 ( u ) sup u J ( ϱ ( u ) ϱ ( a ) ) α 4 Γ ( α 4 + 1 ) ξ ( u ) υ ( u ) = M υ ( u ) .
Therefore, inequalities (26)–(29) imply that
d 1 ( Ψ 1 , T Ψ 1 ) M < .
Furthermore, according to Theorem 1 (parts (i) and (ii)), T has one fixed point Ψ 0 , i.e., T Ψ 0 = Ψ 0 . Moreover, from Theorem 1 (part (iii)), we have
d 1 ( Ψ 1 , Ψ 0 ) 1 1 Q ˘ d 1 ( T Ψ 1 , Ψ 1 ) M 1 Q ˘ , 0 < Q ˘ < 1 .
Thus, the solution of the ϱ -Hilfer fractional snap dynamic system (10) is U . H . R stable. Along with this, if υ ( u ) = 1 , then the solution of the ϱ -Hilfer fractional snap dynamic system (10) is U . H stable. □
Theorem 4.
Let (HP 1 ) and (HP 2 ) hold, let Ψ 1 : J Ω be a continuously differentiable function, and let υ ( u ) be a non-negative, non-increasing continuous function on J, all of which satisfy
Ψ 1 ( u ) ( ϱ ( u ) ϱ ( a ) ) γ 1 1 Γ ( γ 1 ) λ 1 I a + θ 1 ; ϱ ω 1 ( δ 1 ) + ( ϱ ( u ) ϱ ( a ) ) γ 2 + α 1 1 Γ ( γ 2 + α 1 ) λ 2 I a + θ 2 ; ϱ ω 2 ( δ 2 ) + ( ϱ ( u ) ϱ ( a ) ) γ 3 + α 2 + α 1 1 Γ ( γ 3 + α 2 + α 1 ) λ 3 I a + θ 3 ; ϱ ω 3 ( δ 3 ) + ( ϱ ( u ) ϱ ( a ) ) γ 4 + α 3 + α 2 + α 1 1 Γ ( γ 4 + α 3 + α 2 + α 1 ) λ 4 I a + θ 4 ; ϱ ω 4 ( δ 4 ) + I a + α 4 + α 3 + α 2 + α 1 ; ϱ G ˘ Ψ 1 ( u ) I a + α 4 + α 3 + α 2 + α 1 ; ϱ ρ ,
H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) ( ϱ ( u ) ϱ ( a ) ) γ 1 α 1 1 Γ ( γ 1 α 1 ) λ 1 I a + θ 1 ; ϱ ω 1 ( δ 1 ) ( ϱ ( u ) ϱ ( a ) ) γ 2 1 Γ ( γ 2 ) λ 2 I a + θ 2 ; ϱ ω 2 ( δ 2 ) ( ϱ ( u ) ϱ ( a ) ) γ 3 + α 2 1 Γ ( γ 3 + α 2 ) λ 3 I a + θ 3 ; ϱ ω 3 ( δ 3 ) ( ϱ ( u ) ϱ ( a ) ) γ 4 + α 3 + α 2 1 Γ ( γ 4 + α 3 + α 2 ) λ 4 I a + θ 4 ; ϱ ω 4 ( δ 4 ) I a + α 4 + α 3 + α 2 ; ϱ G ˘ Ψ 1 ( u ) I a + α 4 + α 3 + α 2 ; ϱ ρ ,
H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) ( ϱ ( u ) ϱ ( a ) ) γ 1 α 2 α 1 1 Γ ( γ 1 α 2 α 1 ) λ 1 I a + θ 1 ; ϱ ω 1 ( δ 1 ) ( ϱ ( u ) ϱ ( a ) ) γ 2 α 2 1 Γ ( γ 2 α 2 ) λ 2 I a + θ 2 ; ϱ ω 2 ( δ 2 ) ( ϱ ( u ) ϱ ( a ) ) γ 3 1 Γ ( γ 3 ) λ 3 I a + θ 3 ; ϱ ω 3 ( δ 3 ) ( ϱ ( u ) ϱ ( a ) ) γ 4 + α 3 1 Γ ( γ 4 + α 3 ) λ 4 I a + θ 4 ; ϱ ω 4 ( δ 4 ) I a + α 4 + α 3 ; ϱ G ˘ Ψ 1 ( u ) I a + α 4 + α 3 ; ϱ ρ ,
H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) ( ϱ ( u ) ϱ ( a ) ) γ 1 α 3 α 2 α 1 1 Γ ( γ 1 α 3 α 2 α 1 ) λ 1 I a + θ 1 ; ϱ ω 1 ( δ 1 ) ( ϱ ( u ) ϱ ( a ) ) γ 2 α 3 α 2 1 Γ ( γ 2 α 3 α 2 ) λ 2 I a + θ 2 ; ϱ ω 2 ( δ 2 ) ( ϱ ( u ) ϱ ( a ) ) γ 3 α 3 1 Γ ( γ 3 α 3 ) λ 3 I a + θ 3 ; ϱ ω 3 ( δ 3 ) ( ϱ ( u ) ϱ ( a ) ) γ 4 1 Γ ( γ 4 ) λ 4 I a + θ 4 ; ϱ ω 4 ( δ 4 ) I a + α 4 ; ϱ G ˘ Ψ 1 ( u ) I a + α 4 ; ϱ ρ ,
for u J , where ρ > 0 . Then, there is one solution Ψ 0 Ω and a constant λ > 0 for all u J and 0 < Q ˘ < 1 satisfying
1 ξ ( u ) Ψ 1 ( u ) Ψ 0 ( u ) λ ρ M 1 Q ˘ υ ( u ) , 1 ξ ( u ) H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) H D a + α 1 , β 1 ; ϱ Ψ 0 ( u ) λ ρ M 1 Q ˘ υ ( u ) , ξ ( u ) H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 0 ( u ) λ ρ M 1 Q ˘ υ ( u ) , 1 ξ ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 0 ( u ) λ ρ M 1 Q ˘ υ ( u ) ,
where
sup u J ( ϱ ( u ) ϱ ( a ) ) α Γ ( α + 1 ) ξ ( u ) M < ,
which implies that the solution of the ϱ-Hilfer fractional snap dynamic system (10) is s- U . H . R stable.
Proof. 
Let the operator T : Ω Ω be defined as in (19); as in Theorem 3, the metric d 2 ( · ) and hypotheses 1 and 2 imply that
1 υ ( u ) ξ ( u ) ( T Ψ 1 ) ( u ) ( T Ψ 1 ¯ ) ( u ) Q ˘ N , 1 υ ( u ) ξ ( u ) H D a + α 1 , β 1 ; ϱ T Ψ 1 ( u ) H D a + α 1 , β 1 ; ϱ T Ψ 1 ¯ ( u ) Q ˘ N , 1 υ ( u ) ξ ( u ) H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ T Ψ 1 ( u ) H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ T Ψ 1 ¯ ( u ) Q ˘ N ,
and
1 υ ( u ) ξ ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ T Ψ 1 ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ T Ψ 1 ¯ ( u ) Q ˘ N ,
for Q ˘ ( 0 , 1 ) . Hence, we conclude that
d 2 T Ψ 1 , T Ψ 1 ¯ Q ˘ N = Q ˘ d 2 Ψ 1 , Ψ 1 ¯ , 0 < Q ˘ < 1 .
Now, in view of the continuity and positiveness of the decreasing function υ ( u ) , u J , we have 1 υ ( u ) λ , u J , λ > 0 . In addition, from inequalities (30)–(33), we find
( Ψ 1 ) ( u ) ( T Ψ 1 ) ( u ) υ ( u ) ξ ( u ) sup u J ρ ( ϱ ( u ) ϱ ( a ) ) α 4 + α 3 + α 2 + α 1 Γ ( α 4 + α 3 + α 2 + α 1 + 1 ) υ ( u ) ξ ( u ) = λ ρ M ,
1 υ ( u ) ξ ( u ) H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) H D a + α 1 , β 1 ; ϱ T Ψ 1 ( u ) sup u J ρ ( ϱ ( u ) ϱ ( a ) ) α 4 + α 3 + α 2 Γ ( α 4 + α 3 + α 2 + 1 ) υ ( u ) ξ ( u ) = λ ρ M ,
1 υ ( u ) ξ ( u ) H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ T Ψ 1 ( u ) sup u J ρ ( ϱ ( u ) ϱ ( a ) ) α 4 + α 3 Γ ( α 4 + α 3 + 1 ) υ ( u ) ξ ( u ) = λ ρ M ,
and
1 υ ( u ) ξ ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ Ψ 1 ( u ) H D a + α 3 , β 3 ; ϱ H D a + α 2 , β 2 ; ϱ H D a + α 1 , β 1 ; ϱ T Ψ 1 ( u ) sup u J ρ ( ϱ ( u ) ϱ ( a ) ) α 4 Γ ( α 4 + 1 ) υ ( u ) ξ ( u ) = λ ρ M .
Thus, by (34)–(37), we obtain d 2 ( Ψ 1 , T Ψ 1 ) λ ρ M < . Based on Theorem 1 (parts (i) and (ii)), there is one fixed point Ψ 0 i.e., T Ψ 0 = Ψ 0 . Furthermore, according to Theorem 1 (part (iii)), we conclude that
d 2 ( Ψ 1 , Ψ 0 ) 1 1 Q ˘ d 2 ( T Ψ 1 , Ψ 1 ) λ ρ M 1 Q ˘ , 0 < Q ˘ < 1 .
Hence, from the above conclusions, the solution of the ϱ -Hilfer fractional snap dynamic system (10) is s- U . H . R stable, and the proof is complete. □

5. Examples

Herein, we give some examples of the ϱ -Hilfer fractional snap dynamic system on unbounded domains [ a , ) based on numerical simulations to analyze their solutions. In these examples, we consider different cases of the function ϱ to cover the Caputo, Caputo–Hadamard, and Katugampola versions.
Example 1.
Based on system (7), we consider a ϱ-Hilfer fractional snap dynamic system on the unbounded domains J = [ 1.05 , ) as
H D 1.05 67 90 , 8 25 ; ϱ Ψ 1 ( u ) = Ψ 2 ( u ) , H D 1.05 43 80 , 23 25 ; ϱ Ψ 2 ( u ) = Ψ 3 ( u ) , H D 1.05 2 15 , 11 20 ; ϱ Ψ 3 ( u ) = Ψ 4 ( u ) , H D 1.05 7 20 , 13 50 ; ϱ Ψ 4 ( u ) = G u , Ψ 1 ( u ) , Ψ 2 ( u ) , Ψ 3 ( u ) , Ψ 4 ( u ) ,
with
G u , Ψ 1 , Ψ 2 , Ψ 3 , Ψ 4 = u 2 + 1 47 ( 2 + u 2 + 1 ) + 1 exp ( u 2 + 1 ) ( 2 u + 12 3 | Ψ 1 ( u ) | 47 ( 0.5 + | Ψ 1 ( u ) | ) + 3 | u | sin 1 ( Ψ 2 ( u ) ) 94 + u 47 tan 1 ( Ψ 3 ( u ) ) 5 + tan 1 ( Ψ 3 ( u ) ) + 2 u 47 sin ( Ψ 4 ( u ) ) 8 + sin ( Ψ 4 ( u ) ) ) ,
for u J , a = 1.05 0 , under the ϱ-Riemann–Liouville (R-L) fractional integral conditions:
I a + 167 961 ; ϱ Ψ 1 ( a ) = 121 16 I a + 7 8 ; ϱ ω 1 ( 3.76 ) , I a + 37 1000 ; ϱ Ψ 2 ( a ) = 72 39 I a + 3 10 ; ϱ ω 2 ( 2.41 ) , I a + 39 100 ; ϱ Ψ 3 ( a ) = 215 108 I a + 9 13 ; ϱ ω 3 ( 4.58 ) , I a + 481 1000 ; ϱ Ψ 4 ( a ) = 83 105 I a + 3 7 ; ϱ ω 4 ( 5.93 ) ,
where ω i ( u ) = 2 u 2 5 i ( u 2 + i ) , i = 1 , 2 , 3 , 4 . One can check that
α i = 67 90 , 43 80 , 2 15 , 7 20 ( 0 , 1 ] , β i = 8 25 , 23 25 , 11 20 , 13 50 [ 0 , 1 ] ,
α i γ i = α i + β i α i β i = 794 961 , i = 1 , 963 1000 , i = 2 , 61 100 , i = 3 , 519 1000 , i = 4 , 1 γ i = 167 961 , i = 1 , 37 1000 , i = 2 , 39 100 , i = 3 , 481 1000 , i = 4 ,
λ i = 121 16 , 72 39 , 215 108 , 83 105 R , θ i = 7 8 , 3 10 , 9 13 , 3 7 ( 0 , ) ,
and
δ = 3.76 , 2.41 , 4.58 , 5.93 J .
Thus, the ϱ-Hilfer fractional snap dynamic system (38)–(40) can be rewritten as follows:
H D 1.05 7 20 , 13 50 ; ϱ H D 1.05 2 15 , 13 50 ; ϱ H D 1.05 43 80 , 23 25 ; ϱ H D 1.05 8 25 ; ϱ Ψ 1 ( u ) = G ˘ Ψ 1 ( u ) , I 1.05 167 961 ; ϱ Ψ 1 ( 1.05 ) = 121 16 I 1.05 7 8 ; ϱ ω 1 ( 3.76 ) , I 1.05 37 1000 ; ϱ H D 1.05 67 90 , 8 25 ; ϱ Ψ 1 ( 1.05 ) = 72 39 I 1.05 3 10 ; ϱ ω 2 ( 2.41 ) , I 1.05 39 100 ; ϱ H D 1.05 43 80 , 23 25 ; ϱ H D 1.05 67 90 , 8 25 ; ϱ Ψ 1 ( 1.05 ) = 215 108 I 1.05 9 13 ; ϱ ω 3 ( 4.58 ) , I 1.05 481 1000 ; ϱ H D 1.05 2 15 , 13 50 ; ϱ H D 1.05 43 80 , 23 25 ; ϱ H D 1.05 67 90 , 8 25 ; ϱ Ψ 1 ( 1.05 ) = 83 105 I 1.05 3 7 ; ϱ ω 4 ( 5.93 ) ,
where
G ˘ Ψ 1 ( u ) = G ( u , Ψ 1 ( u ) , H D 1.05 67 90 , 8 25 ; ϱ Ψ 1 ( u ) , H D 1.05 43 80 , 23 25 ; ϱ H D 1.05 67 90 , 8 25 ; ϱ Ψ 1 ( u ) , H D 1.05 2 15 , 13 50 ; ϱ H D 1.05 43 80 , 23 25 ; ϱ H D 1.05 67 90 , 8 25 ; ϱ Ψ 1 ( u ) ) .
Now, we have
| G ( u , Ψ 1 , Ψ 2 , Ψ 3 , Ψ 4 ) G u , Ψ 1 * , Ψ 2 * , Ψ 3 * , Ψ 4 * | = | u 2 + 1 47 ( 2 + u 2 + 1 ) + 1 exp ( u 2 + 1 ) ( 2 u + 12 3 | Ψ 1 ( u ) | 47 ( 0.5 + | Ψ 1 ( u ) | ) + 3 | u | sin 1 ( Ψ 2 ( u ) ) 94 + u 47 tan 1 ( Ψ 3 ( u ) ) 5 + tan 1 ( Ψ 3 ( u ) ) + 2 u 47 sin ( Ψ 4 ( u ) ) 8 + sin ( Ψ 4 ( u ) ) ) [ u 2 + 1 47 ( 2 + u 2 + 1 ) + 1 exp ( u 2 + 1 ) ( 2 u + 12 3 | Ψ 1 * ( u ) | 47 ( 0.5 + | Ψ 1 * ( u ) | ) + 3 | u | sin 1 ( Ψ 2 * ( u ) ) 94 + u 47 tan 1 ( Ψ 3 * ( u ) ) 5 + tan 1 ( Ψ 3 * ( u ) ) + 2 u 47 sin ( Ψ 4 * ( u ) ) 8 + sin ( Ψ 4 * ( u ) ) ) ] | 2 | u + 12 3 | 47 exp ( u 2 + 1 ) | | Ψ 1 ( u ) | 0.5 + | Ψ 1 ( u ) | | Ψ 1 * ( u ) | 0.5 + | Ψ 1 * ( u ) | | + 3 | u | 94 exp ( u 2 + 1 ) sin 1 ( Ψ 2 ( u ) ) sin 1 ( Ψ 2 * ( u ) ) + | u | 47 exp ( u 2 + 1 ) | tan 1 ( Ψ 3 ( u ) ) 5 + tan 1 ( Ψ 3 ( u ) ) tan 1 ( Ψ 3 * ( u ) ) 5 + tan 1 ( Ψ 3 * ( u ) ) | + 2 | u | 47 exp ( u 2 + 1 ) | sin ( Ψ 4 ( u ) ) 8 + sin ( Ψ 4 ( u ) ) sin ( Ψ 4 * ( u ) ) 8 + sin ( Ψ 4 * ( u ) ) | 1 exp ( u 2 + 1 ) ( 2 | u + 12 3 | 47 Ψ 1 ( u ) Ψ 1 * ( u ) + 3 | u | 94 Ψ 2 ( u ) Ψ 2 * ( u ) + | u | 47 Ψ 3 ( u ) Ψ 3 * ( u ) + 2 | u | 47 Ψ 4 ( u ) Ψ 4 * ( u ) ) .
So, we can choose ξ ( u ) = 47 exp ( u 2 + 1 ) , σ 1 = 2 | u + 12 3 | , σ 2 = 3 | u | 2 , and σ 3 = | u | , σ 4 = 2 | u | . Additionally, for u J ,
ω i * = sup u [ a , δ i ] ω i ( u ) = 0.264157 , i = 1 , 0.105197 , i = 2 , 0.082484 , i = 3 , 0.063488 , i = 4 .
Now, we consider four cases for ϱ:
ϱ 1 ( u ) = 2 u , ϱ 2 ( u ) = u , ϱ 3 ( u ) = ln ( u + 0.1 ) , ϱ 4 ( u ) = u .
By using Equations (16)–(18), α = α 4 + α 3 + α 2 + α 1 1.76527 , and by choosing suitable values of Q ˘ and L ˘ in the four cases, we have
sup u J 1 ξ ( u ) I a + α ; ϱ σ 1 ( u ) + σ 2 ( u ) + σ 3 ( u ) + σ 4 ( u ) 0.004048 , ϱ 1 ( u ) = 2 u , 0.004703 , ϱ 2 ( u ) = u , 0.000975 , ϱ 3 ( u ) = ln ( u + 0.1 ) , 0.000363 , ϱ 4 ( u ) = u , Q ˘ < 1 ,
and
sup u J 1 ξ ( u ) ( ϱ ( u ) ϱ ( a ) ) η 1 1 Γ ( η 1 ) | λ 1 | ω 1 * ( ϱ ( δ 1 ) ϱ ( a ) ) θ 1 Γ ( θ 1 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) η 2 1 Γ ( η 2 ) | λ 2 | ω 2 * ( ϱ ( δ 2 ) ϱ ( a ) ) θ 2 Γ ( θ 2 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) η 3 1 Γ ( η 3 ) | λ 3 | ω 3 * ( ϱ ( δ 3 ) ϱ ( a ) ) θ 3 Γ ( θ 3 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) η 4 1 Γ ( η 4 ) | λ 4 | ω 4 * ( ϱ ( δ 4 ) ϱ ( a ) ) θ 4 Γ ( θ 4 + 1 ) + I a + α ; ϱ G ˘ Ψ 1 ( 0 ) 0.0000026 , ϱ 1 ( u ) = 2 u , 0.0000007 , ϱ 2 ( u ) = u , 0.0000009 , ϱ 3 ( u ) = ln ( u + 0.1 ) , 0.0000000 , ϱ 4 ( u ) = u , L ˘ < ,
for u J . By considering Q ˘ = 0.05 ( 0 , 1 ) and L ˘ > 0.05 , assumptions (HP 1 ) and (HP 2 ) hold.
Table 1 shows the numerical results of Q ˘ and L ˘ for u [ 1.05 , ) . These values are also shown in Figure 1a,b for the four cases of ϱ. In all four cases of the function ϱ, we saw that all requirements of Theorem 2 were fulfilled. Therefore, this guaranteed that for all four cases of ϱ, the ϱ-Hilfer fractional snap dynamic system (38) admitted one solution on the unbounded domains J = [ 1.05 , ) .
In the next example, we examine the correctness of the results obtained with Theorems 1 and 3. Of course, we shall consider the case in which ϱ ( u ) = u (Caputo type) for three different orders α 1 and show the obtained results computationally and graphically.
Example 2.
We consider a ϱ-Hilfer fractional snap dynamic system (38) on the domains J = [ 1.05 , ) , ϱ ( u ) = u (Caputo type), where
G u , Ψ 1 , Ψ 2 , Ψ 3 , Ψ 4 = | cos ( π u ) | 39 ( 5 + | cos ( π u ) | ) + 1 exp ( u ) + 3 [ 4 u 3 3 + 39 | u | × | sin 1 ( Ψ 1 ( u ) ) | 1.6 + | sin 1 ( Ψ 1 ( u ) ) | + u ( Ψ 2 ( u ) ) 2 78 ( 9 + ( Ψ 2 ( u ) ) 2 ) + tan 1 ( Ψ 3 ( u ) ) 11 ( 39 + 2 u 2 ) + 5 u 39 sin ( Ψ 4 ( u ) ) 5 + sin ( Ψ 4 ( u ) ) ] ,
for u J , a = 1.05 0 , and α { 2 11 , 1 2 , 19 20 } , under the ϱ-Riemann–Liouville (R-L) fractional integral conditions (40), where ω 1 ( u ) = 2 3 | u | , ω 2 ( u ) = 1 5 u , ω 3 ( u ) = 1 4 u 3 and ω 4 ( u ) = 1 3 u 2 . Clearly,
k α 1 γ 1 = 0.4436 , k = 1 , 1 α 1 = 2 11 0.6600 , k = 2 , 2 α 1 = 1 2 , 0.9660 , k = 3 , 3 α 1 = 19 20 , 1 γ 1 = 0.5563 , 1 α 1 = 2 11 , 0.3400 , 2 α 1 = 1 2 , 0.0340 , 3 α 1 = 19 20 ,
and for i = 2 , 3 , 4 ,
α i γ i = α i + β i α i β i = 963 1000 , i = 2 , 61 100 , i = 3 , 519 1000 , i = 4 , 1 γ i = 37 1000 , i = 2 , 39 100 , i = 3 , 481 1000 , i = 4 .
Now, we have
| G ( u , Ψ 1 , Ψ 2 , Ψ 3 , Ψ 4 ) G u , Ψ 1 * , Ψ 2 * , Ψ 3 * , Ψ 4 * | = | 1 exp ( u ) + 3 [ 4 u 3 | sin 1 ( Ψ 1 ( u ) ) | ( 3 + 39 | u | ) ( 1.6 + | sin 1 ( Ψ 1 ( u ) ) | ) + u ( Ψ 2 ( u ) ) 2 78 ( 9 + ( Ψ 2 ( u ) ) 2 ) + tan 1 ( Ψ 3 ( u ) ) 11 ( 39 + 2 u 2 ) + 5 u 39 sin ( Ψ 4 ( u ) ) 5 + sin ( Ψ 4 ( u ) ) ] 1 exp ( u ) + 3 ( 4 u 3 | sin 1 ( Ψ 1 * ( u ) ) | ( 3 + 39 | u | ) ( 1.6 + | sin 1 ( Ψ 1 * ( u ) ) | ) + u ( Ψ 2 * ( u ) ) 2 78 ( 9 + ( Ψ 2 * ( u ) ) 2 ) + tan 1 ( Ψ 3 * ( u ) ) 11 ( 39 + 2 u 2 ) + 5 u 39 sin ( Ψ 4 * ( u ) ) 5 + sin ( Ψ 4 * ( u ) ) 2 ) | 1 exp ( u ) + 3 ( | 4 u 3 3 + 39 | u | | | | sin 1 ( Ψ 1 ( u ) ) | 1.6 + | sin 1 ( Ψ 1 ( u ) ) | | sin 1 ( Ψ 1 * ( u ) ) | 1.6 + | sin 1 ( Ψ 1 * ( u ) ) | | + | u 78 | | ( Ψ 2 ( u ) ) 2 9 + ( Ψ 2 ( u ) ) 2 ( Ψ 2 * ( u ) ) 2 9 + ( Ψ 2 * ( u ) ) 2 | + | 1 11 ( 39 + 2 u 2 ) | tan 1 ( Ψ 3 ( u ) ) tan 1 ( Ψ 3 * ( u ) ) + | 5 u 39 | | sin ( Ψ 4 ( u ) ) 5 + sin ( Ψ 4 ( u ) ) sin ( Ψ 4 * ( u ) ) 5 + sin ( Ψ 4 * ( u ) ) | ) | 4 1 exp ( u ) + 3 ( u 3 3 + 39 | u | | Ψ 1 ( u ) Ψ 1 * ( u ) + | u 78 | Ψ 2 ( u ) Ψ 2 * ( u ) + | 1 11 ( 39 + 2 u 2 ) | Ψ 3 ( u ) Ψ 3 * ( u ) + | 5 u 39 | Ψ 4 ( u ) Ψ 4 * ( u ) ) .
Indeed, we can consider ξ ( u ) = 78 ( exp ( u ) + 3 ) and
σ 1 = 312 | u 3 | 3 + 39 | u | , σ 2 = | u | , σ 3 = 78 11 ( 39 + 2 u 2 ) , σ 4 = 2 5 | u | .
Additionally, we can consider ω i * , which was defined by (40) in the previous example. Now, we consider three cases: α 1 { 2 11 , 1 2 , 19 20 } . By using Equations (16)–(18), we obtain
sup u J 1 ξ ( u ) I a + α ; ϱ σ 1 ( u ) + σ 2 ( u ) + σ 3 ( u ) + σ 4 ( u ) 0.0207 , 1 α 1 = 2 11 , 0.0204 , 2 α 1 = 1 2 , 0.0186 , 3 α 1 = 19 20 , Q ˘ < 1 ,
and
sup u J 1 ξ ( u ) ( ϱ ( u ) ϱ ( a ) ) η 1 1 Γ ( η 1 ) | λ 1 | ω 1 * ( ϱ ( δ 1 ) ϱ ( a ) ) θ 1 Γ ( θ 1 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) η 2 1 Γ ( η 2 ) | λ 2 | ω 2 * ( ϱ ( δ 2 ) ϱ ( a ) ) θ 2 Γ ( θ 2 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) η 3 1 Γ ( η 3 ) | λ 3 | ω 3 * ( ϱ ( δ 3 ) ϱ ( a ) ) θ 3 Γ ( θ 3 + 1 ) + ( ϱ ( u ) ϱ ( a ) ) η 4 1 Γ ( η 4 ) | λ 4 | ω 4 * ( ϱ ( δ 4 ) ϱ ( a ) ) θ 4 Γ ( θ 4 + 1 ) + I a + α ; ϱ G ˘ Ψ 1 ( 0 ) 0.000001 , 1 α 1 = 2 11 , 0.000001 , 2 α 1 = 1 2 , 0.000011 , 3 α 1 = 19 20 . L ˘ < .
We can consider the value of Q ˘ to belong to ( 0 , 1 ) whenever u ( 1 , 4.05 ) , ( 1 , 4.05 ) , and ( 1 , 3.55 ) for i α 1 = 2 11 , 1 2 , 19 20 , respectively. Thus,(HP 1 ) and (HP 2 ) hold for the three cases of α 1 . Table 2 shows these results. These results are also plotted in Figure 2. In all three cases in the order q i , we see that all requirements of Theorems 1 and 4 are fulfilled. Therefore, this guarantees that for all three different cases, in terms of the order α 1 , the solution of the ϱ-Hilfer fractional snap dynamic system (38)–(40) on the domains J = [ 1.05 , ) with (44) is U . H . R stable and, accordingly, is U . H stable.

6. Conclusions

In this paper, we defined a new fractional mathematical model of a dynamic system consisting of a ϱ -Hilfer fractional snap equation with the ϱ -R-L fractional integral conditions in the framework of the generalized sequential ϱ -operators. To confirm the existence criterion, we used the valid fixed point theorems. In the end, we designed examples; by assuming different cases for the function ϱ and order α 1 , we obtained numerical results for these two suggested ϱ -Hilfer fractional snap dynamic systems. It is notable that, by considering the different types of ϱ ( u ) , one can discuss the rest of the qualitative properties of such an extended ϱ -Hilfer fractional snap dynamic system by regarding other generalized models in future projects.

Author Contributions

S.T.M.T.: Actualization, methodology, formal analysis, validation, investigation, initial draft, and major contributions to the writing of the manuscript. M.V.-C.: Actualization, methodology, formal analysis, validation, investigation, initial draft, and major contributions to the writing of the manuscript. I.K.: Actualization, validation, methodology, formal analysis, investigation, and initial draft. M.E.S.: Actualization, methodology, formal analysis, validation, investigation, software, simulation, initial draft, and major contributions to the writing of the manuscript. M.I.A.: Actualization, validation, methodology, formal analysis, investigation, and initial draft. All authors have read and agreed to the published version of the manuscript.

Funding

This project: RESULTADOS CUALITATIVOS DE ECUACIONES DIFERENCIALES FRACCIONARIAS LOCALES Y DESIGUALDADES INTEGRALES Cod: 070-UIO-2022. This study was supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444).

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Acknowledgments

This study was supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444). The authors express their gratitude to the dear unknown referees for their helpful suggestions that improved the final version of this paper.

Conflicts of Interest

The authors declare that they have no competing interest.

References

  1. Abdo, M.S. Boundary value problem for fractional neutral differential equations with infinite delay. Abhath J. Basic Appl. Sci. 2022, 1, 1–18. [Google Scholar]
  2. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
  3. Thabet, S.T.M.; Dhakne, M.B.; Salman, M.A.; Gubran, R. Generalized fractional Sturm-Liouville and Langevin equations involving Caputo derivative with nonlocal conditions. Prog. Fract. Differ. Appl. 2020, 6, 225–237. [Google Scholar] [CrossRef]
  4. Amiri, P.; Samei, M.E. Existence of Urysohn and Atangana-Baleanu fractional integral inclusion systems solutions via common fixed point of multi-valued operators. Chaos Solitons Fractals 2022, 165, 112822. [Google Scholar] [CrossRef]
  5. Abbas, M.I.; Ghaderi, M.; Rezapour, S.; Thabet, S.T.M. On a coupled system of fractional differential equations via the generalized proportional fractional derivatives. J. Funct. Spaces 2022, 2022, 4779213. [Google Scholar] [CrossRef]
  6. Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1993. [Google Scholar]
  7. Lakshmikantham, V. Theory of fractional functional differential equations. Nonlinear Anal. 2008, 69, 3337–3343. [Google Scholar] [CrossRef]
  8. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1993. [Google Scholar]
  9. Elsonbaty, A.R.; El-Sayed, A.M.A. Further nonlinear dynamical analysis of simple jerk system with multiple attractors. Nonlinear Dyn. 2017, 87, 1169–1186. [Google Scholar] [CrossRef]
  10. Sousa, J.V.C.; Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
  11. Abdo, M.; Panchal, S. Fractional integro-differential equations involving ψ-Hilfer fractional derivative. Adv. Appl. Math. Mech. 2019, 11, 338–359. [Google Scholar]
  12. Abdo, M.S.; Saeed, A.M.; Panchal, S.K. Fractional boundary value problem with ψ-Caputo fractional derivative. Proc. Indian Acad. Sci. Math. Sci. 2019, 129, 65. [Google Scholar] [CrossRef]
  13. Almalahi, M.A.; Abdo, M.S.; Panchal, S.K. Existence and Ulam–Hyers–Mittag–Leffler stability results of ψ-Hilfer nonlocal Cauchy problem. Rend. Circ. Mat. Palermo Ser. 2 2020, 11, 57–77. [Google Scholar] [CrossRef]
  14. Almeidal, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
  15. Harikrishnan, S.; Elsayed, E.; Kanagarajan, K. Existence and uniqueness results for fractional pantograph equations involving ψ-Hilfer fractional derivative. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 2018, 25, 319–328. [Google Scholar]
  16. Vanterler, D.C.; Sousa, J.; Capelas, D.O.E. On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator. J. Fixed Point Theory Appl. 2018, 20, 96. [Google Scholar] [CrossRef]
  17. Baitiche, Z.; Derbazi, C.; Benchohra, M. ψ-Caputo fractional differential equations with multi-point boundary conditions by topological degree theory. Results Nonlinear Anal. 2020, 3, 167–178. [Google Scholar]
  18. Bachir, F.S.; Abbas, S.; Benbachir, M.; Benchohra, M. Hilfer-Hadamard fractional differential equations; Existence and attractivity. Adv. Theory Nonlinear Anal. Its Appl. 2021, 5, 49–57. [Google Scholar]
  19. Thabet, S.T.M.; Dhakne, M.B. On positive solutions of higher order nonlinear fractional integro-differential equations with boundary conditions. Malaya J. Mat. 2019, 7, 20–26. [Google Scholar] [CrossRef] [Green Version]
  20. Thabet, S.T.M.; Dhakne, M.B. On boundary value problems of higher order abstract fractional integro-differential equations. Int. J. Nonlinear Anal. Appl. 2016, 7, 165–184. [Google Scholar]
  21. Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 2012, 142. [Google Scholar] [CrossRef] [Green Version]
  22. Adjabi, Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T. On Cauchy problems with Caputo-Hadamard fractional derivatives. J. Comput. Anal. Appl. 2016, 21, 661–681. [Google Scholar]
  23. Palve, L.A.; Abdo, M.S.; Panchal, S.K. Fractional functional differential equations with delay involving Hilfer-Hadamard type. Palest. J. Math. 2022, 11, 614–625. [Google Scholar]
  24. Ali, A.; Mahariq, I.; Shah, K.; Abdeljawad, T.; Al-Sheikh, B. Stability analysis of initial value problem of pantograph-type implicit fractional differential equations with impulsive conditions. Adv. Differ. Equ. 2021, 2021, 55. [Google Scholar] [CrossRef]
  25. Ali, A.; Shah, K.; Abdeljawad, T. Study of implicit delay fractional differential equations under anti-periodic boundary conditions. Adv. Differ. Equ. 2020, 2020, 139. [Google Scholar] [CrossRef] [Green Version]
  26. Thabet, S.T.M.; Dhakne, M.B. On nonlinear fractional integro-differential equations with two boundary conditions. Adv. Stud. Contemp. Math. 2016, 26, 513–526. [Google Scholar]
  27. Mahmudov, N.; Matar, M.M. Existence of mild solution for hybrid differential equations with arbitrary fractional order. TWMS J. Pure Appl. Math. 2017, 8, 160–169. [Google Scholar]
  28. Boutiara, A.; Guerbati, K.; Benbachir, M. Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces. Aims Math. 2020, 5, 259–272. [Google Scholar] [CrossRef]
  29. Matar, M.M.; Ahmad, M.; Zada, A.; Etemad, S.; Rezapour, S. On the existence and stability of two positive solutions of a hybrid differential system of arbitrary fractional order via Avery–Anderson–Henderson criterion on cones. Adv. Differ. Equ. 2021, 2021, 423. [Google Scholar] [CrossRef]
  30. Abo Amra, I.E.; Matar, M.M. Coupled system of fractional differential equations with impulsive and nonlocal coupled boundary conditions. Bol. Soc. Mat. Mex. 2020, 26, 477–497. [Google Scholar] [CrossRef]
  31. Alqahtani, B.; Aydi, H.; Karapinar, E.; Rakocevic, V. A solution for Volterra fractional integral equations by hybrid contractions. Mathematics 2019, 7, 694. [Google Scholar] [CrossRef] [Green Version]
  32. Abdeljawad, T.; Alzabut, J. On Riemann-Liouville fractional q–difference equations and their application to retarded logistic type model. Math. Methods Appl. Sci. 2018, 41, 8953–8962. [Google Scholar] [CrossRef]
  33. Baghani, H.; Alzabut, J.; Nieto, J. A coupled system of Langevin differential equations of fractional order and associated to anti-periodic boundary conditions. Math. Meth. Appl. Sci. 2020, 2020, 1–11. [Google Scholar]
  34. Rezapour, S.; Thabet, S.T.M.; Matar, M.M.; Alzabut, J.; Etemad, S. Some existence and stability criteria to a generalized FBVP having fractional composite p-Laplacian operator. J. Funct. Spaces 2021, 2021, 9554076. [Google Scholar] [CrossRef]
  35. Pham, V.T.; Vaidyanathan, S.; Volos, C.; Jafari, S.; Alsaadi, F.E. Chaos in a simple snap system with only one nonlinearity, its adaptive control and real circuit design. Arch. Control Sci. 2019, 29, 73–96. [Google Scholar] [CrossRef]
  36. Mahmoud, E.E.; Trikha, P.; Jahanzaib, L.S.; Higazy, M.; Alkinani, M.H. Application of triple compound combination anti-synchronization among parallel fractional snap systems and electronic circuit implementation. Adv. Differ. Equ. 2021, 2021, 211. [Google Scholar] [CrossRef]
  37. Samei, M.E.; Matar, M.M.; Etemad, S.; Rezapour, S. On the generalized fractional snap boundary problems via G-Caputo operators: Existence and stability analysis. Adv. Differ. Equ. 2021, 2021, 498. [Google Scholar] [CrossRef]
  38. Wang, X.; Berhail, A.; Tabouche, N.; Matar, M.M.; Samei, M.E.; Kaabar, M.K.A.; Yue, X.G. A Novel Investigation of Non-Periodic snap BVP in the G-Caputo Sense. Axioms 2022, 11, 390. [Google Scholar] [CrossRef]
  39. Thabet, S.T.M.; Matar, M.M.; Salman, M.A.; Samei, M.E.; Vivas-Cortez, M. On coupled snap system with integral boundary conditions in the G-Caputo sense. Aims Math. 2023, 8, 12576–12605. [Google Scholar] [CrossRef]
  40. Adjabi, Y.; Samei, M.E.; Matar, M.M.; Alzabut, J. Langevin differential equation in frame of ordinary and Hadamard fractional derivatives under three point boundary conditions. Aims Math. 2021, 6, 2796–2843. [Google Scholar] [CrossRef]
  41. Diaz, J.; Margolis, B. A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef] [Green Version]
  42. Su, X.; Zhang, S. Unbounded solutions to a boundary value problem of fractional order on the halfline. Comput. Math. Appl. 2011, 61, 1079–1087. [Google Scholar] [CrossRef] [Green Version]
  43. Su, X. Solutions to boundary value problem of fractional order on unbounded domains in a Banach space. Nonlinear Anal. Theory Methods Appl. 2011, 74, 2844–2852. [Google Scholar] [CrossRef]
  44. Kou, C.; Zhou, H.; Yan, Y. Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis. Nonlinear Anal. Theory Methods Appl. 2011, 74, 5975–5986. [Google Scholar] [CrossRef]
  45. Thabet, S.T.M.; Kedim, I. Study of nonlocal multiorder implicit differential equation involving Hilfer fractional derivative on unbounded domains. J. Math. 2023, 2023, 8668325. [Google Scholar] [CrossRef]
  46. Oliveira, E.C.; Sousa, J.V.C. Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations. Results Math. 2018, 73, 111. [Google Scholar] [CrossRef] [Green Version]
  47. Cădariu, L.; Găvruţa, L.; Găvruţa, P. Weighted space method for the stability of some nonlinear equations. Appl. Anal. Discret. Math. 2012, 6, 126–139. [Google Scholar] [CrossRef] [Green Version]
Figure 1. Graphical representation of Q ˘ and L ˘ for the four cases of ϱ i ( u ) when u J in Example 1.
Figure 1. Graphical representation of Q ˘ and L ˘ for the four cases of ϱ i ( u ) when u J in Example 1.
Fractalfract 07 00607 g001
Figure 2. Graphical representation of Q ˘ and L ˘ whenever α 1 { 2 11 , 1 2 , 19 20 } for u [ 1.05 , 6 ] in Example 2.
Figure 2. Graphical representation of Q ˘ and L ˘ whenever α 1 { 2 11 , 1 2 , 19 20 } for u [ 1.05 , 6 ] in Example 2.
Fractalfract 07 00607 g002
Table 1. Suitable numerical values of Q ˘ and L ˘ for four cases of ϱ i ( u ) .
Table 1. Suitable numerical values of Q ˘ and L ˘ for four cases of ϱ i ( u ) .
ϱ 1 ( u ) = 2 u ϱ 2 ( u ) = u ϱ 3 ( u ) = ln ( u + 0.1 ) ϱ 4 ( u ) = u
u Q ˘ L ˘ Q ˘ L ˘ Q ˘ L ˘ Q ˘ L ˘
1.05 0.000000 N a N 0.000000 N a N 0.000000 N a N 0.000000 N a N
1.55 0.004048 0.004703 0.001550 0.003246 0.000975 0.002532 0.000363 0.004722
2.05 0.003531 0.000141 0.000950 0.000164 0.000450 0.000169 0.000192 0.000287
2.55 0.001146 0.000002 0.000211 0.000007 0.000079 0.000010 0.000038 0.000016
3.05 0.000186 0.000001 0.000023 0.000000 0.000007 0.000000 0.000004 0.000001
3.55 0.000017 0.000000 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000
Table 2. Suitable numerical values of Q ˘ and L ˘ for the three case of α 1 .
Table 2. Suitable numerical values of Q ˘ and L ˘ for the three case of α 1 .
1 α 1 = 2 11 2 α 1 = 1 2 3 α 1 = 19 20
u Q ˘ L ˘ Q ˘ L ˘ Q ˘ L ˘
1.05 0.000000 N a N 0.000000 N a N 0.000000 N a N
2.05 0.018888 0.001894 0.015172 0.002016 0.010312 0.001726
3.05 0.020704 0.000248 0.020433 0.000236 0.018668 0.000159
4.05 0.014720 0.000040 0.016335 0.000030 0.017674 0.000004
5.05 0.008707 0.000005 0.010489 0.000000 0.012776 0.000011
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Thabet, S.T.M.; Vivas-Cortez, M.; Kedim, I.; Samei, M.E.; Ayari, M.I. Solvability of a ϱ-Hilfer Fractional Snap Dynamic System on Unbounded Domains. Fractal Fract. 2023, 7, 607. https://doi.org/10.3390/fractalfract7080607

AMA Style

Thabet STM, Vivas-Cortez M, Kedim I, Samei ME, Ayari MI. Solvability of a ϱ-Hilfer Fractional Snap Dynamic System on Unbounded Domains. Fractal and Fractional. 2023; 7(8):607. https://doi.org/10.3390/fractalfract7080607

Chicago/Turabian Style

Thabet, Sabri T. M., Miguel Vivas-Cortez, Imed Kedim, Mohammad Esmael Samei, and M. Iadh Ayari. 2023. "Solvability of a ϱ-Hilfer Fractional Snap Dynamic System on Unbounded Domains" Fractal and Fractional 7, no. 8: 607. https://doi.org/10.3390/fractalfract7080607

Article Metrics

Back to TopTop