Investigating the Effects of a Fractional Operator on the Evolution of the ENSO Model: Bifurcations, Stability and Numerical Analysis
Abstract
:1. Introduction
2. Equilibria and Bifurcation
Bifurcation
3. Some Theoritical Results
4. Numerical Results
5. Stability Analysis
- ;
- .
- ;
- .
Stability
6. Numerical Simulations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Varsoliwala, A.C.; Singh, T.R. Mathematical modeling of tsunami wave propagation at mid ocean and its amplification and run-up on shore. J. Ocean Eng. Sci. 2021, 6, 367–375. [Google Scholar] [CrossRef]
- Li, J.; Liao, S. On the dynamics of the gravitational lifting system in the deep sea mining industry. J. Ocean Eng. Sci. 2021, 6, 400–404. [Google Scholar] [CrossRef]
- Rajapriyadharshini, J.R. An improved smoothed particle hydrodynamics approach using new inverse kernel function. J. Ocean Eng. Sci. 2022, 7, 327–336. [Google Scholar] [CrossRef]
- Bjerknes, J. Atmospheric teleconnections from the equatorial. Pac. Mon. Weather Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Wyrtki, K. El Niño, the dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr. 1975, 5, 572–584. [Google Scholar] [CrossRef]
- Zeng, Y. The Laplace-Adomian-Pade Technique for the ENSO Model. Math. Probl. Eng. 2013, 2013, 954857. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Kumar, D.; Nieto, J.J. Analysis of an El Nino-Southern Oscillation model with a new fractional derivative. Chaos Solitons Fractals 2017, 99, 109–115. [Google Scholar] [CrossRef]
- Ou, W.; Xu, C.; Cui, Q.; Liu, Z.; Pang, Y.; Farman, M.; Ahmad, S.; Zeb, A. Mathematical study on bifurcation dynamics and control mechanism of tri-neuron BAM neural networks including delay. Math. Methods Appl. Sci. 2023. [Google Scholar] [CrossRef]
- Xu, C.; Mu, D.; Pan, Y.; Aouiti, C.; Yao, L. Exploring bifurcation in a fractional-order predator-prey system with mixed delays. J. Appl. Anal. Comput. 2023, 13, 1119–1136. [Google Scholar] [CrossRef]
- Xu, C.; Mu, D.; Liu, Z.; Pang, Y.; Liao, M.; Li, P. Bifurcation dynamics and control mechanism of a fractional-order delayed Brusselator chemical reaction model. MATCH Commun. Math. Comput. Chem. 2023, 89, 73–106. [Google Scholar] [CrossRef]
- Xu, C.J.; Cui, X.H.; Li, P.L.; Yan, J.L.; Yao, L.Y. Exploration on dynamics in a discrete predator-prey competitive model involving time delays and feedback controls. J. Biol. Dyn. 2023, 17, 2220349. [Google Scholar] [CrossRef] [PubMed]
- Jhangeer, A.; Faridi, W.A.; Asjad, M.I.; Inc, M. A comparative study about the propagation of water waves with fractional operators. J. Ocean Eng. Sci. 2022; in press. [Google Scholar] [CrossRef]
- Alqahtani, R.T.; Ahmad, S.; Akgül, A. Dynamical analysis of bio-ethanol production model under generalized nonlocal operator in Caputo sense. Mathematics 2021, 9, 2370. [Google Scholar] [CrossRef]
- Ahmad, S.; Ullah, A.; Partohaghighi, M.; Saifullah, S.; Akgül, A.; Jarad, F. Oscillatory and complex behaviour of Caputo-Fabrizio fractional order HIV-1 infection model. AIMS Math. 2021, 7, 4778–4792. [Google Scholar] [CrossRef]
- Gulalai; Rihan, F.A.; Ahmad, S.; Rihan, F.A.; Ullah, A.; Al-Mdallal, Q.M.; Akgül, A. Nonlinear analysis of a nonlinear modified KdV equation under Atangana Baleanu Caputo derivative. AIMS Math. 2022, 7, 7847–7865. [Google Scholar] [CrossRef]
- Khan, A.; Ali, A.; Ahmad, S.; Saifullah, S.; Nonlaopon, K.; Akgül, A. Nonlinear Schrödinger equation under non-singular fractional operators: A computational study. Results Phys. 2022, 43, 106062. [Google Scholar] [CrossRef]
- Ali, A.; Khan, A.U.; Algahtani, O.; Saifullah, S. Semi-analytical and numerical computation of fractal-fractional sine-Gordon equation with non-singular kernels. AIMS Math. 2022, 7, 14975–14990. [Google Scholar] [CrossRef]
- Saifullah, S.; Ahmad, S.; Jarad, F. Study on the dynamics of a piecewise tumor–immune interaction model. Fractals 2022, 30, 2240233. [Google Scholar] [CrossRef]
- Naowarat, S.; Ahmad, S.; Saifullah, S.; de la Sen, M.; Akgül, A. Crossover dynamics of Rotavirus disease under fractional piecewise derivative with vaccination effects: Simulations with real data from Thailand, West Africa, and the US. Symmetry 2022, 14, 2641. [Google Scholar] [CrossRef]
- Gao, F.; Li, W.Q.; Tong, H.Q.; Li, X.L. Chaotic analysis of Atangana–Baleanu derivative fractional order Willis aneurysm system. Chin. Phys. B 2019, 28, 090501. [Google Scholar] [CrossRef]
- Xu, C.; Liu, Z.; Liao, M.; Yao, L. Theoretical analysis and computer simulations of a fractional order bank data model incorporating two unequal time delays. Expert Syst. Appl. 2022, 199, 116859. [Google Scholar] [CrossRef]
- Xu, C.; Liu, Z.; Yao, L.; Aouiti, C. Further exploration on bifurcation of fractional-order six-neuron bi-directional associative memory neural networks with multi-delays. Appl. Math. Comput. 2021, 410, 126458. [Google Scholar] [CrossRef]
- Gómez-Aguilar, J.F.; Rosales-García, J.J.; Bernal-Alvarado, J.J.; Córdova-Fraga, T.; Guzmán-Cabrera, R. Fractional mechanical oscillators. Rev. Mex. Fís. 2012, 58, 348–352. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Rus, I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpath. J. Math. 2010, 26, 103–107. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, P.; Xu, C.; Peng, X.; Qiao, R. Investigating the Effects of a Fractional Operator on the Evolution of the ENSO Model: Bifurcations, Stability and Numerical Analysis. Fractal Fract. 2023, 7, 602. https://doi.org/10.3390/fractalfract7080602
Zhang Y, Li P, Xu C, Peng X, Qiao R. Investigating the Effects of a Fractional Operator on the Evolution of the ENSO Model: Bifurcations, Stability and Numerical Analysis. Fractal and Fractional. 2023; 7(8):602. https://doi.org/10.3390/fractalfract7080602
Chicago/Turabian StyleZhang, Yuqi, Peiluan Li, Changjin Xu, Xueqing Peng, and Rui Qiao. 2023. "Investigating the Effects of a Fractional Operator on the Evolution of the ENSO Model: Bifurcations, Stability and Numerical Analysis" Fractal and Fractional 7, no. 8: 602. https://doi.org/10.3390/fractalfract7080602
APA StyleZhang, Y., Li, P., Xu, C., Peng, X., & Qiao, R. (2023). Investigating the Effects of a Fractional Operator on the Evolution of the ENSO Model: Bifurcations, Stability and Numerical Analysis. Fractal and Fractional, 7(8), 602. https://doi.org/10.3390/fractalfract7080602