A Numerical Technique Based on Bernoulli Wavelet Operational Matrices for Solving a Class of Fractional Order Differential Equations
Abstract
:1. Introduction
2. Preliminaries
Wavelets
- Chebyshev Wavelets (CWs) Here, we describe three kinds of Chebyshev wavelets, which are correspondingly named the Chebyshev polynomials [28,29].
- First Kind Chebyshev Wavelets (FSTCWs): The FSTCWs have four arguments, positive integer and are defined as:It needs to be noticed that in Chebyshev wavelets, in order to obtain the orthogonal wavelets, the weight functions have to be dilated and translated as
- Second Kind Chebyshev Wavelets (SNDCWs): The SNDCWs has the following formare second kind Chebyshev polynomials with degree p. Based on the definition, Chebyshev polynomials are orthogonal with regard to the weight function within . The recursive formula is as follows:
- Third Kind Chebyshev Wavelets (TRDCWs): The TRDCWs take the following form:are third kind Chebyshev polynomials of degree p. Based on the definition, Chebyshev polynomials are orthogonal with regard to the weight function within . The recursive formula is as follows:
- Legendre Wavelets (LWs) The LWs have four arguments, positive integer, x denotes time, and p is the degree of the Legendre polynomials. They are defined on as follows: [30,31,32], are the Legendre polynomials of degree p with regard to the weight function on and fulfill the recurrence equations listed below:
- Bernoulli wavelets, are Bernoulli numbers. These are a set of signed rational numbers discovered in the series expansion of trigonometric functions [34], , , , ,Also, the first polynomials of Bernoulli are, , , ,Bernoulli polynomials are a complete basis in [0, 1] [35].Bernoulli wavelets have four arguments: k, m is the order for Bernoulli polynomials, and t is the normalized time. They are described on as follows [28,36]:
3. Materials and Methods
3.1. Function Approximation
3.2. The Bernoulli Wavelet to Bernoulli Polynomials Transformation Matrix
3.3. Fractional Integration Operational Bernoulli Wavelet Matrix
3.4. Convergence Analysis
3.5. Error Estimation
4. Results
4.1. Procedure
- Step 1: Assign the values for k and M to clarify the dimensions of: Bernoulli wavelets , Bernoulli polynomials , the transformation matrix , and the Riemann–Liouville fractional operational matrix of integration.
- Step 2: Compute the Riemann–Liouville fractional operational matrix of integration .For simplicity, if we take , we follow the followingStage a:Stage b: compute the values and , whereStage c: compute the row vectors and , whereThen, the matrix F is of the form
- Step 3: We construct the transformation matrix . For example, if we take as in (15), then we derive the operational matrix of the Bernoulli wavelet of the fractional integration from the relationExample: Taking , from stage a, we haveFrom stage b, we haveHence, the matrix takes the formFinally, takes the form
- Step 5: Solve the system of algebraic equations using MATLAB program to compute the unknown vector C.
- Step 6: Substitute for unknown vector C in (25) to obtain the approximated solution.
4.2. Numerical Examples
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
the set of all real numbers | |
the set of all positive real numbers | |
={1,2,…} | |
={0,1,2,…} | |
the complex plane | |
the Riemann-Liouville fractional integral operator | |
The Riemann-Liouville fractional derivative of order | |
Caputo fractional-order derivative | |
Bernoulli polynomials of order m | |
, | Bernoulli numbers |
Bernoulli wavelets | |
Legendre wavelets (LWS) | |
FDEs | fractional differential equations |
FFDM | fractional finite difference method |
First Kind Chebyshev Wavelets (FSTCWs) | |
Second Kind Chebyshev Wavelets (SNDCWs) | |
Third Kind Chebyshev Wavelets (TRDCWs) | |
the transformation matrix of the bernoulli wavelet | |
the fractional integration Bernoulli wavelet operational matrix | |
Riemann-Liouville fractional operational matrix of integration |
References
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations to Methods of Their Solution and Some of Their Applications; Academic Press: New York, NY, USA, 1998. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: Hoboken, NJ, USA, 1993. [Google Scholar]
- Oldham, K.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA; London, UK, 1974. [Google Scholar]
- Baillie, R. Long memory processes and fractional integration in econometrics. J. Econom. 1996, 73, 5–59. [Google Scholar] [CrossRef]
- Hall, M.G.; Barrick, T.R. From diffusion-weighted MRI to anomalous diffusion imaging. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2008, 59, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Lederman, C.; Roquejoffre, J.M.; Wolanski, N. Mathematical justification of a nonlinear integro-differential equation for the propagation of spherical flames. Annali Mat. Pura Appl. 2004, 183, 173–239. [Google Scholar] [CrossRef]
- Rossikhin, Y.A.; Shitikova, M.V. Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 1997, 50, 15–67. [Google Scholar] [CrossRef]
- He, J. Some applications of nonlinear fractional differential equations and their approximations. Bull. Sci. Technol. 1999, 15, 86–90. [Google Scholar]
- Hashim, I.; Abdulaziz, O.; Momani, S. Homotopy analysis method for fractional IVPs. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 674–684. [Google Scholar] [CrossRef]
- Sweilam, N.H.; Khader, M.M.; Al-Bar, R.F. Numerical studies for a multi-order fractional differential equation. Phys. Lett. A 2007, 371, 26–33. [Google Scholar] [CrossRef]
- Dehghan, M.; Manafian, J.; Saadatmandi, A. Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial. Differ. Equ. Int. J. 2010, 26, 448–479. [Google Scholar] [CrossRef]
- Wu, G.C.; Lee, E.W.M. Fractional variational iteration method and its application. Phys. Lett. A 2010, 374, 2506–2509. [Google Scholar] [CrossRef]
- Odibat, Z.M.; Momani, S. Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 2006, 7, 27–34. [Google Scholar] [CrossRef]
- Ertürk, V.S.; Momani, S. Solving systems of fractional differential equations using differential transform method. J. Comput. Appl. Math. 2008, 215, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Daftardar-Gejji, V.; Jafari, H. Solving a multi-order fractional differential equation using Adomian decomposition. Appl. Math. Comput. 2007, 189, 541–548. [Google Scholar] [CrossRef]
- Momani, S. Analytical approximate solution for fractional heat-like and wave-like equations with variable coefficients using the decomposition method. Appl. Math. Comput. 2005, 165, 459–472. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Tadjeran, C. Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 2006, 56, 80–90. [Google Scholar] [CrossRef]
- Al-Rabtah, A.; Momani, S.; Ramadan, M.A. Solving linear and nonlinear fractional differential equations using spline functions. Abstr. Appl. Anal. 2012, 2012, 426514. [Google Scholar] [CrossRef] [Green Version]
- Lakestani, M.; Dehghan, M.; Irandoust-Pakchin, S. The construction of operational matrix of fractional derivatives using B-spline functions. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1149–1162. [Google Scholar] [CrossRef]
- Chang, P.; Isah, A. Legendre Wavelet Operational Matrix of fractional Derivative through wavelet-polynomial transformation and its Applications in Solving Fractional Order Brusselator system. In Proceedings of the Journal of Physics: Conference Series, Yogyakarta, Indonesia, 14–15 September 2015; IOP Publishing: Bristol, UK, 2016; Volume 693, p. 012001. [Google Scholar]
- Jafari, H.; Yousefi, S.A.; Firoozjaee, M.A.; Momani, S.; Khalique, C.M. Application of Legendre wavelets for solving fractional differential equations. Comput. Math. Appl. 2011, 62, 1038–1045. [Google Scholar] [CrossRef] [Green Version]
- Yuanlu, L.I. Solving a nonlinear fractional differential equation using Chebyshev wavelets. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2284–2292. [Google Scholar]
- Chouhan, D.; Mishra, V.; Srivastava, H.M. Bernoulli wavelet method for numerical solution of anomalous infiltration and diffusion modeling by nonlinear fractional differential equations of variable order. Results Appl. Math. 2021, 10, 100146. [Google Scholar] [CrossRef]
- Agrawal, K.; Kumar, R.; Kumar, S.; Hadid, S.; Momani, S. Bernoulli wavelet method for non-linear fractional Glucose–Insulin regulatory dynamical system. Chaos Solitons Fractals 2022, 164, 112632. [Google Scholar] [CrossRef]
- Keshavarz, E.; Ordokhani, Y.; Razzaghi, M. Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Model. 2014, 38, 6038–6051. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Guf, J.; Jiang, W. The Haar wavelets operational matrix of integration. Int. J. Syst. Sci. 1996, 27, 623–628. [Google Scholar] [CrossRef]
- YYadav, K.; Jaiswal, J. On the operational matrix for fractional integration and its application for solving Abel integral equation using Bernoulli wavelets, Glob. J. Pure Appl. Math. 2019, 15, 81–101. [Google Scholar]
- Do, Q.H.; Ngo, H.T.B.; Razzaghi, M. A generalized fractional-order Chebyshev wavelet method for two-dimensional distributed-order fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2021, 95, 105597. [Google Scholar] [CrossRef]
- Nemati, S.; Lima, P.M.; Sedaghat, S. Legendre wavelet collocation method combined with the Gauss–Jacobi quadrature for solving fractional delay-type integro-differential equations. Appl. Numer. Math. 2020, 149, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Saeed, R.B.; Ibraheem, K.I. A Legendre wavelet method to solve fractional differential equations with variable coefficients. In Proceedings of the AIP Conference Proceedings, Samarra, Iraq, 23–24 March 2021; AIP Publishing LLC: Melville, NY, USA, 2022; Volume 2394, p. 070028. [Google Scholar]
- Seçer, A.; Altun, S.; Bayram, M. Legendre wavelet operational matrix method for solving fractional differential equations in some special conditions. Therm. Sci. 2019, 23, S203–S214. [Google Scholar] [CrossRef] [Green Version]
- Costabile, F.; Dellaccio, F.; Gualtieri, M.I. A new approach to Bernoulli polynomials, Rendiconti di Matematica. Ser. VII 2006, 26, 112. [Google Scholar]
- Arfken, G. Mathematical Methods for Physicists; Academic Press: San Diego, CA, USA, 1985. [Google Scholar]
- Kreyszig, E. Introductory Functional Analysis with Applications; John Wiley & Sons: Hoboken, NJ, USA, 1991; Volume 17. [Google Scholar]
- Arafa, H.M.; Ramadan, M.A. Bernoulli wavelet method for numerical solution of linear system of Fredholm integral equation of the second kind. Alex. Eng. J. 2023, 77, 63–74. [Google Scholar] [CrossRef]
- Zahra, W.K.; Elkholy, S.M. Cubic spline solution of fractional Bagley-Torvik equation. Electron. J. Math. Anal. Appl. 2013, 1, 230–241. [Google Scholar]
- Daraghmeh, A.; Qatanani, N.; Saadeh, A. Numerical solution of fractional differential equations. Appl. Math. 2020, 11, 1100–1115. [Google Scholar] [CrossRef]
- El-Danaf, T.S.; Ramadan, M.A.; Sherif, M.N. Error analysis, stability, and numerical solutions of fractional-order differential equations. Int. J. Pure Appl. Math. 2012, 76, 647–659. [Google Scholar]
- Albadarneh, R.B.; Batiha, I.M.; Zurigat, M. Numerical solutions for linear fractional differential equations of order 1 < α < 2 using finite difference method (FFDM). Int. J. Math. Comput. Sci. 2016, 16, 103–111. [Google Scholar]
t | Exact Solution | Proposed Method | Absolute Error | The Matrix Approach | Absolute Error |
---|---|---|---|---|---|
(Bernoulli Wavelet, M = 3, k = 1) | Method [38] | ||||
0.0 | 0.0000 | −4.000000000000000 | 3.951574000000000 | 0 | 0 |
0.1 | 0.0100 | 1.000000000000000 | 2.602085000000000 | 8.621129726629000 | 1.378870273371000 |
0.2 | 0.0400 | 4.000000000000000 | 4.510281000000000 | 3.768990737059000 | 2.310092694100000 |
0.3 | 0.0900 | 9.000000000000000 | 8.743006000000000 | 8.653940580194799 | 3.460594198052000 |
0.4 | 0.1600 | 1.600000000000000 | 1.30451200000000 | 1.547406970677520 | 5.259302932248000 |
0.5 | 0.2500 | 2.500000000000017 | 1.720846000000000 | 2.419317740052830 | 8.068225994717000 |
0.6 | 0.3600 | 3.600000000000022 | 2.164935000000000 | 3.478600123952930 | 1.213998760470700 |
0.7 | 0.4900 | 4.900000000000025 | 2.553513000000000 | 4.724404482263740 | 1.755955177362000 |
0.8 | 0.6400 | 6.400000000000028 | 2.886580000000000 | 6.158149467974990 | 2.418505320250100 |
0.9 | 0.8100 | 8.100000000000032 | 3.330669000000000 | 7.784088457659700 | 3.159115420340300 |
1 | 1.0000 | 1.000000000000004 | 3.774758000000000 | 9.609838046410990 | 3.901619535890100 |
t | Exact Solution | Proposed Method | Relative Error | The Matrix Approach | Relative Error |
---|---|---|---|---|---|
(Bernoulli wavelet, M = 3, k = 1) | Method [38] | ||||
0.1 | 0.0100 | 1.000000000000000 | 0 | 8.621129726629000 | 1.378870000000000 |
0.2 | 0.0400 | 4.000000000000050 | 1.249000000000000 | 3.768990737059000 | 5.775230000000000 |
0.3 | 0.0900 | 9.000000000000090 | 1.002280000000000 | 8.653940580194799 | 3.845100000000000 |
0.4 | 0.1600 | 1.600000000000013 | 8.153200000000000 | 1.547406970677520 | 3.287060000000000 |
0.5 | 0.2500 | 2.500000000000017 | 6.883380000000000 | 2.419317740052830 | 3.227290000000000 |
0.6 | 0.3600 | 3.600000000000022 | 6.167910000000000 | 3.478600123952930 | 3.372220000000000 |
0.7 | 0.4900 | 4.900000000000025 | 5.097960000000000 | 4.724404482263740 | 3.583580000000000 |
0.8 | 0.6400 | 6.400000000000028 | 4.336810000000000 | 6.158149467974990 | 3.778910000000000 |
0.9 | 0.8100 | 8.100000000000032 | 3.837810000000000 | 7.784088457659700 | 3.900140000000000 |
1 | 1.0000 | 1.000000000000004 | 3.552710000000000 | 9.609838046410990 | 3.901620000000000 |
t | Exact Solution | Proposed Method | Absolute Error | Spline Functions Method | Absolute Error | |
---|---|---|---|---|---|---|
(Bernoulli Wavelet, M = 3, k = 1) | of Integral Form (Using h = | |||||
0.01 and m = 2) [39] | ||||||
0.1 | 0.0100 | 1.000000000000000 | 9.999994320000000 | 5.679999999258930 | 2.048670000000000 | 7.951300000000000 |
0.0200 | 4.000000000000000 | 3.999999444000000 | 5.559999997298980 | 1.276150000000000 | 2.723800000000000 | |
0.0300 | 9.000000000000000 | 8.999999456000000 | 5.440000002115280 | 3.763020000000000 | 5.237000000000000 | |
0.0400 | 1.600000000000000 | 1.599999946800000 | 5.319999996089560 | 8.158430000000000 | 7.841600000000000 | |
0.0500 | 2.500000000000000 | 2.499999948000000 | 5.200000022589910 | 1.493580000000000 | 1.000000000000000 | |
0.2 | 0.0100 | 1.000000000000000 | 9.999994320000000 | 5.679999999258930 | 3.757990000000000 | 9.599999999999999 |
0.0200 | 4.000000000000000 | 3.999999444000000 | 5.559999997298980 | 2.939430000000000 | 3.700000000000000 | |
0.0300 | 9.000000000000000 | 8.999999456000000 | 5.440000002115280 | 9.899630000000001 | 8.000000000000000 | |
0.0400 | 1.600000000000000 | 1.599999946800000 | 5.319999996089560 | 2.358220000000000 | 1.300000000000000 | |
0.0500 | 2.500000000000000 | 2.499999948000000 | 5.200000022589910 | 4.644040000000000 | 2.000000000000000 | |
0.3 | 0.0100 | 1.000000000000000 | 9.999988120000000 | 1.187999999887950 | 5.419970000000001 | 9.899999999999999 |
0.0200 | 4.000000000000000 | 3.999998824000000 | 1.175999999963010 | 6.097229999999999 | 3.900000000000000 | |
0.0300 | 9.000000000000000 | 8.999998836000000 | 1.163999999902530 | 2.365070000000000 | 8.700000000000000 | |
0.0400 | 1.600000000000000 | 1.599999884800000 | 1.151999999299960 | 6.227089999999999 | 1.500000000000000 | |
0.0500 | 2.500000000000000 | 2.499999886000000 | 1.139999999781590 | 1.325200000000000 | 2.300000000000000 | |
0.4 | 0.0100 | 1.000000000000000 | 9.999994320000000 | 5.679999999258930 | 8.838670000000001 | 9.899999999999999 |
0.0200 | 4.000000000000000 | 3.999999444000000 | 5.559999997298980 | 1.137680000000000 | 3.900000000000000 | |
0.0300 | 9.000000000000000 | 8.999999456000000 | 5.440000002115280 | 5.125250000000000 | 8.800000000000001 | |
0.0400 | 1.600000000000000 | 1.599999946800000 | 5.319999996089560 | 1.500400000000000 | 1.500000000000000 | |
0.0500 | 2.500000000000000 | 2.499999948000000 | 5.200000022589910 | 3.466460000000000 | 2.500000000000000 | |
0.5 | 0.0100 | 1.000000000000000 | 9.999988120000000 | 1.187999999887950 | 1.130950000000000 | 9.899999999999999 |
0.0200 | 4.000000000000000 | 3.999998824000000 | 1.175999999963010 | 1.907550000000000 | 3.900000000000000 | |
0.0300 | 9.000000000000000 | 8.999998836000000 | 1.163999999902530 | 1.006400000000000 | 9.000000000000001 | |
0.0400 | 1.600000000000000 | 1.599999884800000 | 1.151999999299960 | 3.295210000000000 | 1.500000000000000 | |
0.0500 | 2.500000000000000 | 2.499999886000000 | 1.139999999781590 | 8.303120000000000 | 2.500000000000000 |
t | Exact Solution | Proposed Method | Relative Error | Spline Functions Method | Relative Error | |
---|---|---|---|---|---|---|
(Bernoulli Wavelet, M = 3, k = 1) | of Integral Form (Using h = | |||||
0.01 and m = 2) [39] | ||||||
0.1 | 0.0100 | 1.000000000000000 | 9.999994320000000 | 5.680000000000000 | 2.048670000000000 | 7.951330000000000 |
0.0200 | 4.000000000000000 | 3.999999444000000 | 1.390000000000000 | 1.276150000000000 | 6.809630000000000 | |
0.0300 | 9.000000000000000 | 8.999999456000000 | 6.044440000000000 | 3.763020000000000 | 5.818870000000000 | |
0.0400 | 1.600000000000000 | 1.599999946800000 | 3.325000000000000 | 8.158430000000000 | 4.900980000000000 | |
0.0500 | 2.500000000000000 | 2.499999948000000 | 2.080000000000000 | 1.493580000000000 | 4.025680000000000 | |
0.2 | 0.0100 | 1.000000000000000 | 9.999994320000000 | 5.680000000000000 | 3.757990000000000 | 9.624200000000001 |
0.0200 | 4.000000000000000 | 3.999999444000000 | 1.390000000000000 | 2.939430000000000 | 9.265139999999999 | |
0.0300 | 9.000000000000000 | 8.999999456000000 | 6.044440000000000 | 9.899630000000001 | 8.900040000000000 | |
0.0400 | 1.600000000000000 | 1.599999946800000 | 3.325000000000000 | 2.358220000000000 | 8.526110000000000 | |
0.0500 | 2.500000000000000 | 2.499999948000000 | 2.080000000000000 | 4.644040000000000 | 8.142380000000000 | |
0.3 | 0.0100 | 1.000000000000000 | 9.999988120000000 | 1.188000000000000 | 6.119970000000001 | 9.938800000000000 |
0.0200 | 4.000000000000000 | 3.999998824000000 | 2.940000000000000 | 6.097229999999999 | 9.847570000000000 | |
0.0300 | 9.000000000000000 | 8.999998836000000 | 1.293330000000000 | 2.365070000000000 | 9.737209999999999 | |
0.0400 | 1.600000000000000 | 1.599999884800000 | 7.200000000000000 | 6.227089999999999 | 9.610810000000000 | |
0.0500 | 2.500000000000000 | 2.499999886000000 | 4.560000000000000 | 1.325200000000000 | 9.469919999999999 | |
0.4 | 0.0100 | 1.000000000000000 | 9.999994320000000 | 5.680000000000000 | 8.838670000000001 | 9.991160000000000 |
0.0200 | 4.000000000000000 | 3.999999444000000 | 1.390000000000000 | 1.137680000000000 | 9.971560000000000 | |
0.0300 | 9.000000000000000 | 8.999999456000000 | 6.044440000000000 | 5.125250000000000 | 9.943050000000000 | |
0.0400 | 1.600000000000000 | 1.599999946800000 | 3.325000000000000 | 1.500400000000000 | 9.906230000000000 | |
0.0500 | 2.500000000000000 | 2.499999948000000 | 2.080000000000000 | 3.466460000000000 | 9.861340000000000 | |
0.5 | 0.01 | 1.000000000000000 | 9.999988120000000 | 1.188000000000000 | 1.130950000000000 | 9.998870000000000 |
0.02 | 4.000000000000000 | 3.999998824000000 | 2.940000000000000 | 1.907550000000000 | 9.995230000000001 | |
0.03 | 9.000000000000000 | 8.999998836000000 | 1.293330000000000 | 1.006400000000000 | 9.988820000000000 | |
0.04 | 1.600000000000000 | 1.599999884800000 | 7.200000000000000 | 3.295210000000000 | 9.979400000000000 | |
0.05 | 2.500000000000000 | 2.499999886000000 | 4.560000000000000 | 8.303120000000000 | 9.966790000000000 |
t | Exact Solution | Proposed Method | Absolute Error | FFDM [40] | Absolute Error |
---|---|---|---|---|---|
(Bernoulli Wavelet, M = 3, k = 1) | |||||
0.1 | 0.0100 | 1.000000000000349 | 3.490263633665336 | 1.000000000000325 | 3.200560000000000 |
0.2 | 0.0400 | 4.000000000000350 | 3.490263633665336 | 4.000000000000937 | 9.298120000000000 |
0.3 | 0.0900 | 9.000000000000352 | 3.497202527569243 | 9.000000000001489 | 1.480760000000000 |
0.4 | 0.1600 | 1.600000000000035 | 3.497202527569243 | 1.600000000000190 | 1.898480000000000 |
0.5 | 0.2500 | 2.500000000000035 | 3.497202527569243 | 2.500000000000235 | 2.298160000000000 |
0.6 | 0.3600 | 3.600000000000035 | 3.497202527569243 | 3.600000000000282 | 2.803310000000000 |
0.7 | 0.4900 | 4.900000000000034 | 3.497202527569243 | 4.900000000000332 | 3.302910000000000 |
0.8 | 0.6400 | 6.400000000000033 | 3.441691376337985 | 6.400000000000382 | 3.796960000000000 |
0.9 | 0.8100 | 8.100000000000033 | 3.441691376337985 | 8.100000000000432 | 4.296560000000000 |
1 | 1.0000 | 1.000000000000003 | 3.552713678800501 | 1.000000000000049 | 3.99680000000000 |
t | Exact Solution | Proposed Method | Relative Error | FFDM [40] | Relative Error |
---|---|---|---|---|---|
(Bernoulli Wavelet, M = 3, k = 1) | |||||
0.1 | 0.0100 | 1.000000000000349 | 3.490260000000000 | 1.000000000000325 | 3.24914 |
0.2 | 0.0400 | 4.000000000000350 | 8.743010000000000 | 4.000000000000937 | 2.341880000000000 |
0.3 | 0.0900 | 9.000000000000352 | 3.916620000000000 | 9.000000000001489 | 1.654540000000000 |
0.4 | 0.1600 | 1.600000000000035 | 2.203100000000000 | 1.600000000000190 | 1.188290000000000 |
0.5 | 0.2500 | 2.500000000000035 | 1.398880000000000 | 2.500000000000235 | 9.414690000000000 |
0.6 | 0.3600 | 3.600000000000035 | 9.714450000000001 | 3.600000000000282 | 7.848660000000000 |
0.7 | 0.4900 | 4.900000000000034 | 7.023860000000000 | 4.900000000000332 | 6.774630000000000 |
0.8 | 0.6400 | 6.400000000000033 | 5.204170000000000 | 6.400000000000382 | 5.967450000000000 |
0.9 | 0.8100 | 8.100000000000033 | 3.974870000000000 | 8.100000000000432 | 5.331810000000000 |
1 | 1.0000 | 1.000000000000003 | 3.330670000000000 | 1.000000000000049 | 4.862780000000000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arafa, H.M.; Ramadan, M.A.; Althobaiti, N. A Numerical Technique Based on Bernoulli Wavelet Operational Matrices for Solving a Class of Fractional Order Differential Equations. Fractal Fract. 2023, 7, 604. https://doi.org/10.3390/fractalfract7080604
Arafa HM, Ramadan MA, Althobaiti N. A Numerical Technique Based on Bernoulli Wavelet Operational Matrices for Solving a Class of Fractional Order Differential Equations. Fractal and Fractional. 2023; 7(8):604. https://doi.org/10.3390/fractalfract7080604
Chicago/Turabian StyleArafa, Heba M., Mohamed A. Ramadan, and Nesreen Althobaiti. 2023. "A Numerical Technique Based on Bernoulli Wavelet Operational Matrices for Solving a Class of Fractional Order Differential Equations" Fractal and Fractional 7, no. 8: 604. https://doi.org/10.3390/fractalfract7080604
APA StyleArafa, H. M., Ramadan, M. A., & Althobaiti, N. (2023). A Numerical Technique Based on Bernoulli Wavelet Operational Matrices for Solving a Class of Fractional Order Differential Equations. Fractal and Fractional, 7(8), 604. https://doi.org/10.3390/fractalfract7080604